Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Thorne is active.

Publication


Featured researches published by James L. Thorne.


Nutrition Society Annual Conference. Symposium 'Diet and cancer', Symposium 'Diet and bone health', Symposium 'Diet and CVD', Symposium 'Diet and mental health' | 2008

The vitamin D receptor in cancer

James L. Thorne; Moray J. Campbell

Over the last 25 years roles have been established for vitamin D receptor (VDR) in influencing cell proliferation and differentiation. For example, murine knock-out approaches have revealed a role for the VDR in controlling mammary gland growth and function. These actions appear widespread, as the enzymes responsible for 1alpha,25-dihydroxycholecalciferol generation and degradation, and the VDR itself, are all functionally present in a wide range of epithelial and haematopoietic cell types. These findings, combined with epidemiological and functional data, support the concept that local, autocrine and paracrine VDR signalling exerts control over cell-fate decisions in multiple cell types. Furthermore, the recent identification of bile acid lithocholic acid as a VDR ligand underscores the environmental sensing role for the VDR. In vitro and in vivo dissection of VDR signalling in cancers (e.g. breast, prostate and colon) supports a role for targeting the VDR in either chemoprevention or chemotherapy settings. As with other potential therapeutics, it has become clear that cancer cells display de novo and acquired genetic and epigenetic mechanisms of resistance to these actions. Consequently, a range of experimental and clinical options are being developed to bring about more targeted actions, overcome resistance and enhance the efficacy of VDR-centred therapeutics.


The Journal of Pathology | 2013

MiR‐26b is down‐regulated in carcinoma‐associated fibroblasts from ER‐positive breast cancers leading to enhanced cell migration and invasion

Eldo Verghese; Ruth Drury; Caroline A. Green; Deborah L Holliday; Xiaomei Lu; Claire Nash; Valerie Speirs; James L. Thorne; Helene Thygesen; Alexandre Zougman; Mark A. Hull; Andrew M. Hanby; Thomas A. Hughes

Carcinoma‐associated fibroblasts (CAFs) influence the behaviour of cancer cells but the roles of microRNAs in this interaction are unknown. We report microRNAs that are differentially expressed between breast normal fibroblasts and CAFs of oestrogen receptor‐positive cancers, and explore the influences of one of these, miR‐26b, on breast cancer biology. We identified differentially expressed microRNAs by expression profiling of clinical samples and a tissue culture model: miR‐26b was the most highly deregulated microRNA. Using qPCR, miR‐26b was confirmed as down‐regulated in fibroblasts from 15 of 18 further breast cancers. Next, we examined whether manipulation of miR‐26b expression changed breast fibroblast behaviour. Reduced miR‐26b expression caused fibroblast migration and invasion to increase by up to three‐fold in scratch‐closure and trans‐well assays. Furthermore, in co‐culture with MCF7 breast cancer epithelial cells, fibroblasts with reduced miR‐26b expression enhanced both MCF7 migration in trans‐well assays and MCF7 invasion from three‐dimensional spheroids by up to five‐fold. Mass spectrometry was used to identify expression changes associated with the reduction of miR‐26b expression in fibroblasts. Pathway analyses of differentially expressed proteins revealed that glycolysis/TCA cycle and cytoskeletal regulation by Rho GTPases are downstream of miR‐26b. In addition, three novel miR‐26b targets were identified (TNKS1BP1, CPSF7, COL12A1) and the expression of each in cancer stroma was shown to be significantly associated with breast cancer recurrence. MiR‐26b in breast CAFs is a potent regulator of cancer behaviour in oestrogen receptor‐positive cancers, and we have identified key genes and molecular pathways that act downstream of miR‐26b in CAFs.


Nucleic Acids Research | 2011

Epigenetic control of a VDR-governed feed-forward loop that regulates p21(waf1/cip1) expression and function in non-malignant prostate cells.

James L. Thorne; Orla Maguire; Craig L. Doig; Sebastiano Battaglia; Leah Fehr; Lara Sucheston; Merja Heinaniemi; Laura Patricia O’Neill; Christopher J McCabe; Bryan M. Turner; Carsten Carlberg; Moray J. Campbell

In non-malignant RWPE-1 prostate epithelial cells signaling by the nuclear receptor Vitamin D Receptor (VDR, NR1I1) induces cell cycle arrest through targets including CDKN1A (encodes p21(waf1/cip1)). VDR dynamically induced individual histone modification patterns at three VDR binding sites (R1, 2, 3) on the CDKN1A promoter. The magnitude of these modifications was specific to each phase of the cell cycle. For example, H3K9ac enrichment occurred rapidly only at R2, whereas parallel accumulation of H3K27me3 occurred at R1; these events were significantly enriched in G1 and S phase cells, respectively. The epigenetic events appeared to allow VDR actions to combine with p53 to enhance p21(waf1/cip1) activation further. In parallel, VDR binding to the MCM7 gene induced H3K9ac enrichment associated with rapid mRNA up-regulation to generate miR-106b and consequently regulate p21(waf1/cip1) expression. We conclude that VDR binding site- and promoter-specific patterns of histone modifications combine with miRNA co-regulation to form a VDR-regulated feed-forward loop to control p21(waf1/cip1) expression and cell cycle arrest. Dissection of this feed-forward loop in a non-malignant prostate cell system illuminates mechanisms of sensitivity and therefore possible resistance in prostate and other VDR responsive cancers.


Carcinogenesis | 2010

Elevated NCOR1 disrupts PPARα/γ signaling in prostate cancer and forms a targetable epigenetic lesion

Sebastiano Battaglia; Orla Maguire; James L. Thorne; Laura B. Hornung; Craig L. Doig; Song Liu; Lara Sucheston; Anna Bianchi; Farhat L. Khanim; Lyndon Gommersall; Henry S.O. Coulter; Serena Rakha; Ian Giddings; Laura P. O'Neill; Colin S. Cooper; Christopher McCabe; Christopher M. Bunce; Moray J. Campbell

The loss of anti-proliferative responsiveness in prostate cancer cell lines toward ligands for vitamin D receptor, retinoic acid receptors/retinoid X receptors and peroxisome proliferator activated receptor (PPAR)alpha/gamma may entail underlying epigenetic events, as ligand insensitivity reflects significantly altered messenger RNA expression of corepressors and histone-modifying enzymes. Expression patterns were dependent on phases of the cell cycle and associated with repressed basal gene expression of vitamin D receptor and PPARalpha/gamma target genes, for example CDKN1A [encodes p21((waf1/cip1))]. Elevated nuclear corepressor 1 (NCOR1) and nuclear corepressor 2/silencing mediator of retinoic acid and thyroid hormone receptor protein levels were detected in prostate cancer cell lines compared with non-malignant counterparts. Knockdown of the corepressor NCOR1 significantly elevated basal expression of a cohort of target genes, including CDKN1A. Both chemical [histone deacetylases inhibitor (HDACi)] and NCOR1 knockdown targeting enhanced anti-proliferative sensitivity toward PPARalpha/gamma ligands in prostate cancer cell lines. Pursuing PPARalpha/gamma signaling, microarray approaches were undertaken to identify pathways and genes regulated uniquely by a combination of PPARalpha/gamma activation and HDAC inhibition. Again, HDACi and knockdown approaches demonstrated that elevated NCOR1 expression and activity distorted PPARalpha/gamma gene targets centered on, for example cell cycle control, including CDKN1A and TGFBRAP1. Quantitative real time polymerase chain reaction validation and chromatin immunoprecipitation assays both confirmed that elevated NCOR1 disrupted the ability of PPARalpha/gamma to regulate key target genes (CDKN1A and TGFBRAP1). Interrogation of these relationships in prostate cancer samples using principal component and partial correlation analyses established significant interdependent relationships between NCOR1-PPARalpha/gamma and representative target genes, independently of androgen receptor expression. Therefore, we conclude that elevated NCOR1 distorts the actions of PPARalpha/gamma selectively and generates a potential epigenetic lesion with diagnostic and prognostic significance.


The International Journal of Biochemistry & Cell Biology | 2009

Transcription factors, chromatin and cancer

James L. Thorne; Moray J. Campbell; Bryan M. Turner

Transcription factors, chromatin and chromatin-modifying enzymes are key components in a complex network through which the genome interacts with its environment. For many transcription factors, binding motifs are found adjacent to the promoter regions of a large proportion of genes, requiring mechanisms that confer binding specificity in any given cell type. These include association of the factor with other proteins and packaging of DNA, as chromatin, at the binding sequence so as to inhibit or facilitate binding. Recent evidence suggests that specific post-translational modifications of the histones packaging promoter DNA can help guide transcription factors to selected sites. The enzymes that put such modifications in place are dependent on metabolic components (e.g. acetyl CoA, S-adenosyl methionine) and susceptible to inhibition or activation by environmental factors. Local patterns of histone modification can be altered or maintained through direct interaction between the transcription factor and histone modifying enzymes. The functional consequences of transcription factor binding are also dependent on protein modifying enzymes, particularly those that alter lysine methylation at selected residues. Remarkably, the role of these enzymes is not limited to promoter-proximal events, but can be linked to changes in the intranuclear location of target genes. In this review we describe results that begin to define how transcription factors, chromatin and environmental variables interact and how these interactions are subverted in cancer. We focus on the nuclear receptor family of transcription factors, where binding of ligands such as steroid hormones and dietary derived factors provides an extra level of environmental input.


Carcinogenesis | 2009

Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells

S. Asad Abedin; James L. Thorne; Sebastiano Battaglia; Orla Maguire; Laura B. Hornung; Alan P. Doherty; Ian G. Mills; Moray J. Campbell

Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.


Carcinogenesis | 2013

Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns

Craig L. Doig; Prashant K. Singh; Vineet K. Dhiman; James L. Thorne; Sebastiano Battaglia; Michelle Sobolewski; Orla Maguire; Laura P. O'Neill; Bryan M. Turner; Christopher J. McCabe; Dominic J. Smiraglia; Moray J. Campbell

The current study investigated transcriptional distortion in prostate cancer cells using the vitamin D receptor (VDR) as a tool to examine how epigenetic events driven by corepressor binding and CpG methylation lead to aberrant gene expression. These relationships were investigated in the non-malignant RWPE-1 cells that were 1α,25(OH)(2)D(3) responsive (RWPE-1) and malignant cell lines that were 1α,25(OH)(2)D(3) partially responsive (RWPE-2) and resistant (PC-3). These studies revealed that selective attenuation and repression of VDR transcriptional responses in the cancer cell lines reflected their loss of antiproliferative sensitivity. This was evident in VDR target genes including VDR, CDKN1A (encodes p21( (waf1/cip1) )) and GADD45A; NCOR1 knockdown alleviated this malignant transrepression. ChIP assays in RWPE-1 and PC-3 cells revealed that transrepression of CDKN1A was associated with increased NCOR1 enrichment in response to 1α,25(OH)(2)D(3) treatment. These findings supported the concept that retained and increased NCOR1 binding, associated with loss of H3K9ac and increased H3K9me2, may act as a beacon for the initiation and recruitment of DNA methylation. Overexpressed histone methyltransferases (KMTs) were detectable in a wide panel of prostate cancer cell lines compared with RWPE-1 and suggested that generation of H3K9me2 states would be favored. Cotreatment of cells with the KMT inhibitor, chaetocin, increased 1α,25(OH)(2)D(3)-mediated induction of CDKN1A expression supporting a role for this event to disrupt CDKN1A regulation. Parallel surveys in PC-3 cells of CpG methylation around the VDR binding regions on CDKN1A revealed altered basal and VDR-regulated DNA methylation patterns that overlapped with VDR-induced recruitment of NCOR1 and gene transrepression. Taken together, these findings suggest that sustained corepressor interactions with nuclear-resident transcription factors may inappropriately transform transient-repressive histone states into more stable and repressive DNA methylation events.


PLOS ONE | 2013

Neoadjuvant Chemotherapy Induces Expression Levels of Breast Cancer Resistance Protein That Predict Disease-Free Survival in Breast Cancer

Baek Kim; Hiba Fatayer; Andrew M. Hanby; Kieran Horgan; Sarah L. Perry; Elizabeth M. A. Valleley; Eldo Verghese; Bethany Jill Williams; James L. Thorne; Thomas A. Hughes

Three main xenobiotic efflux pumps have been implicated in modulating breast cancer chemotherapy responses. These are P-glycoprotein (Pgp), Multidrug Resistance-associated Protein 1 (MRP1), and Breast Cancer Resistance Protein (BCRP). We investigated expression of these proteins in breast cancers before and after neoadjuvant chemotherapy (NAC) to determine whether their levels define response to NAC or subsequent survival. Formalin-fixed paraffin-embedded tissues were collected representing matched pairs of core biopsy (pre-NAC) and surgical specimen (post-NAC) from 45 patients with invasive ductal carcinomas. NAC regimes were anthracyclines +/− taxanes. Immunohistochemistry was performed for Pgp, MRP1 and BCRP and expression was quantified objectively using computer-aided scoring. Pgp and MRP1 were significantly up-regulated after exposure to NAC (Wilcoxon signed-rank p = 0.0024 and p<0.0001), while BCRP showed more variation in response to NAC, with frequent up- (59% of cases) and down-regulation (41%) contributing to a lack of significant difference overall. Pre-NAC expression of all markers, and post-NAC expression of Pgp and MRP1 did not correlate with NAC response or with disease-free survival (DFS). Post-NAC expression of BCRP did not correlate with NAC response, but correlated significantly with DFS (Log rank p = 0.007), with longer DFS in patients with low post-NAC BCRP expression. In multivariate Cox regression analyses, post-NAC BCRP expression levels proved to predict DFS independently of standard prognostic factors, with high expression associated with a hazard ratio of 4.04 (95% confidence interval 1.3–12.2; p = 0.013). We conclude that NAC-induced expression levels of BCRP predict survival after NAC for breast cancer, while Pgp and MRP1 expression have little predictive value.


BMC Cancer | 2015

Chemotherapy induces Notch1-dependent MRP1 up-regulation, inhibition of which sensitizes breast cancer cells to chemotherapy

Baek Kim; Sam L. Stephen; Andrew M. Hanby; Kieran Horgan; Sarah L. Perry; Julie Richardson; Elizabeth A. Roundhill; Elizabeth M. A. Valleley; Eldo Verghese; Bethany Jill Williams; James L. Thorne; Thomas A. Hughes

BackgroundMulti-drug Resistance associated Protein-1 (MRP1) can export chemotherapeutics from cancer cells and is implicated in chemoresistance, particularly as is it known to be up-regulated by chemotherapeutics. Our aims in this study were to determine whether activation of Notch signalling is responsible for chemotherapy-induced MRP1 expression Notch in breast cancers, and whether this pathway can be manipulated with an inhibitor of Notch activity.MethodsMRP1 and Notch1 were investigated in 29 patients treated with neoadjuvant chemotherapy (NAC) for breast cancer, using immunohistochemistry on matched biopsy (pre-NAC) and surgical samples (post-NAC). Breast epithelial cell cultures (T47D, HB2) were treated with doxorubicin in the presence and absence of functional Notch1, and qPCR, siRNA, Western blots, ELISAs and flow-cytometry were used to establish interactions.ResultsIn clinical samples, Notch1 was activated by neoadjuvant chemotherapy (Wilcoxon signed-rank p < 0.0001) and this correlated with induction of MRP1 expression (rho = 0.6 p = 0.0008). In breast cell lines, doxorubicin induced MRP1 expression and function (non-linear regression p < 0.004). In the breast cancer line T47D, doxorubicin activated Notch1 and, critically, inhibition of Notch1 activation with the γ-secretase inhibitor DAPT abolished the doxorubicin-induced increase in MRP1 expression and function (t-test p < 0.05), resulting in enhanced cellular retention of doxorubicin and increased doxorubicin-induced apoptosis (t-test p = 0.0002). In HB2 cells, an immortal but non-cancer derived breast cell line, Notch1-independent MRP1 induction was noted and DAPT did not enhance doxorubicin-induced apoptosis.ConclusionsNotch inhibitors may have potential in sensitizing breast cancer cells to chemotherapeutics and therefore in tackling chemoresistance.


International Journal of Cancer | 2015

Nuclear receptors and the Warburg effect in cancer.

James L. Thorne; Moray J. Campbell

In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter‐intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro‐environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets.

Collaboration


Dive into the James L. Thorne's collaboration.

Top Co-Authors

Avatar

Moray J. Campbell

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Orla Maguire

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Baek Kim

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar

Bethany Jill Williams

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kieran Horgan

Leeds Teaching Hospitals NHS Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge