Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James L. Weber is active.

Publication


Featured researches published by James L. Weber.


Genomics | 1990

Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms.

James L. Weber

Abundant human interspersed repetitive DNA sequences of the form (dC-dA)n.(dG-dT)n have been shown to exhibit length polymorphisms. Examination of over 100 human (dC-dA)n.(dG-dT)n sequences revealed that the sequences differed from each other both in numbers of repeats and in repeat sequence type. Using a set of precise classification rules, the sequences were divided into three categories: perfect repeat sequences without interruptions in the runs of CA or GT dinucleotides (64% of total), imperfect repeat sequences with one or more interruptions in the run of repeats (25%), and compound repeat sequences with adjacent tandem simple repeats of a different sequence (11%). Informativeness of (dC-dA)n.(dG-dT)n markers in the perfect sequence category was found to increase with increasing average numbers of repeats. PIC values ranged from 0 at about 10 or fewer repeats to above 0.8 for sequences with about 24 or more repeats. (dC-dA)n.(dG-dT)n polymorphisms in the imperfect sequence category showed lower informativeness than expected on the basis of the total numbers of repeats. The longest run of uninterrupted CA or GT repeats was found to be the best predictor of informativeness of (dC-dA)n.(dG-dT)n polymorphisms regardless of the repeat sequence category.


American Journal of Human Genetics | 1998

Comprehensive human genetic maps : Individual and sex-specific variation in recombination

Karl W. Broman; Jeffrey C. Murray; Val C. Sheffield; Raymond L. White; James L. Weber

Comprehensive human genetic maps were constructed on the basis of nearly 1 million genotypes from eight CEPH families; they incorporated >8,000 short tandem-repeat polymorphisms (STRPs), primarily from Généthon, the Cooperative Human Linkage Center, the Utah Marker Development Group, and the Marshfield Medical Research Foundation. As part of the map building process, 0.08% of the genotypes that resulted in tight double recombinants and that largely, if not entirely, represent genotyping errors, mutations, or gene-conversion events were removed. The total female, male, and sex-averaged lengths of the final maps were 44, 27, and 35 morgans, respectively. Numerous (267) sets of STRPs were identified that represented the exact same loci yet were developed independently and had different primer pairs. The distributions of the total number of recombination events per gamete, among the eight mothers of the CEPH families, were significantly different, and this variation was not due to maternal age. The female:male ratio of genetic distance varied across individual chromosomes in a remarkably consistent fashion, with peaks at the centromeres of all metacentric chromosomes. The new linkage maps plus much additional information, including a query system for use in the construction of reliably ordered maps for selected subsets of markers, are available from the Marshfield Website.


Science | 2009

The Genetic Structure and History of Africans and African Americans

Sarah A. Tishkoff; Floyd A. Reed; Françoise R. Friedlaender; Christopher Ehret; Alessia Ranciaro; Alain Froment; Jibril Hirbo; Agnes A. Awomoyi; Jean-Marie Bodo; Ogobara K. Doumbo; Muntaser E. Ibrahim; Abdalla T. Juma; Maritha J. Kotze; Godfrey Lema; Jason H. Moore; Holly M. Mortensen; Thomas B. Nyambo; Sabah A. Omar; Kweli Powell; Gideon S. Pretorius; Michael W. Smith; Mahamadou A. Thera; Charles Wambebe; James L. Weber; Scott M. Williams

African Origins The modern human originated in Africa and subsequently spread across the globe. However, the genetic relationships among the diverse populations on the African continent have been unclear. Tishkoff et al. (p. 1035; see the cover, published online 30 April) provide a detailed genetic analysis of most major groups of African populations. The findings suggest that Africans represent 14 ancestral populations. Populations tend to be of mixed ancestry which documents historical migrations. The data mainly support but sometimes challenge proposed relationships between groups of self-identified ethnicity previously hypothesized on the basis of linguistic studies. The authors also examined populations of African Americans and individuals of mixed ancestry from Cape Town, documenting the variation and origins of admixture within these groups. A genetic study illuminates population history, as well as the relationships among and the origin of major language families. Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (~71%), European (~13%), and other African (~8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.


Science | 1995

A familial Alzheimer's disease locus on chromosome 1

Ephrat Levy-Lahad; Ellen M. Wijsman; Ellen Nemens; Leojean Anderson; Katrina A.B. Goddard; James L. Weber; Bird Td; Gerard D. Schellenberg

The Volga German kindreds are a group of seven related families with autosomal dominant early-onset Alzheimers disease (AD). Linkage to known AD-related loci on chromosomes 21 and 14 has been excluded. Significant evidence for linkage to AD in these families was obtained with D1S479 and there was also positive evidence for linkage with other markers in the region. A 112-base pair allele of D1S479 co-segregated with the disease in five of seven families, which is consistent with a common genetic founder. This study demonstrates the presence of an AD locus on chromosome 1q31-42.


Genomics | 1992

Survey of human and rat microsatellites.

Jacques S. Beckmann; James L. Weber

Length variations in simple sequence tandem repeats (microsatellite DNA polymorphisms) are finding increasing usage in mammalian genetics. Although every variety of short tandem repeat that has been tested has been shown to exhibit length polymorphisms, little information on the relative abundance of the different repeat motifs has been collected. In this report, summaries of GenBank searches for all possible human and rat microsatellites ranging from mononucleotide to tetranucleotide repeats are presented. In humans, the five most abundant microsatellites with total lengths for the runs of repeats of greater than or equal to 20 nucleotides contained repeat sequences of A, AC, AAAN, AAN, and AG, in order of decreasing abundance, where N is C, G, or T. These five groups comprised about 76% of all microsatellites. Many other human simple sequence repeats were found at low frequency. In the 745 kb of human genomic DNA surveyed, one microsatellite of greater than or equal to 20 nucleotides in length was found, on average, every 6 kb. Only 12% of the human microsatellites had total lengths greater than or equal to 40 nucleotides. Roughly 80% of the A, AAN, and AAAN microsatellites and 50% of the AT microsatellites, but few of the other human microsatellites, were found to be associated with interspersed, repetitive Alu elements. In rats, the five most abundant microsatellites contained AC, AG, A, AAAN, and AAGG sequences, respectively. Rat microsatellites were generally longer than human microsatellites, with 43% of the rat sequences greater than or equal to 40 nucleotides.


American Journal of Human Genetics | 2001

Olfactory Receptor–Gene Clusters, Genomic-Inversion Polymorphisms, and Common Chromosome Rearrangements

Sabrina Giglio; Karl W. Broman; Naomichi Matsumoto; Vladimiro Calvari; Giorgio Gimelli; Thomas Neumann; Hirofumi Ohashi; Lucille Voullaire; Daniela Larizza; Roberto Giorda; James L. Weber; David H. Ledbetter; Orsetta Zuffardi

The olfactory receptor (OR)-gene superfamily is the largest in the mammalian genome. Several of the human OR genes appear in clusters with > or = 10 members located on almost all human chromosomes, and some chromosomes contain more than one cluster. We demonstrate, by experimental and in silico data, that unequal crossovers between two OR gene clusters in 8p are responsible for the formation of three recurrent chromosome macrorearrangements and a submicroscopic inversion polymorphism. The first two macrorearrangements are the inverted duplication of 8p, inv dup(8p), which is associated with a distinct phenotype, and a supernumerary marker chromosome, +der(8)(8p23.1pter), which is also a recurrent rearrangement and is associated with minor anomalies. We demonstrate that it is the reciprocal of the inv dup(8p). The third macrorearrangment is a recurrent 8p23 interstitial deletion associated with heart defect. Since inv dup(8p)s originate consistently in maternal meiosis, we investigated the maternal chromosomes 8 in eight mothers of subjects with inv dup(8p) and in the mother of one subject with +der(8), by means of probes included between the two 8p-OR gene clusters. All the mothers were heterozygous for an 8p submicroscopic inversion that was delimited by the 8p-OR gene clusters and was present, in heterozygous state, in 26% of a population of European descent. Thus, inversion heterozygosity may cause susceptibility to unequal recombination, leading to the formation of the inv dup(8p) or to its reciprocal product, the +der(8p). After the Yp inversion polymorphism, which is the preferential background for the PRKX/PRKY translocation in XX males and XY females, the OR-8p inversion is the second genomic polymorphism that confers susceptibility to the formation of common chromosome rearrangements. Accordingly, it may be possible to develop a profile of the individual risk of having progeny with chromosome rearrangements.


American Journal of Human Genetics | 2002

Human Diallelic Insertion/Deletion Polymorphisms

James L. Weber; Donna E David; Jeremy Heil; Ying Fan; Chengfeng Zhao; Gabor T. Marth

We report the identification and characterization of 2,000 human diallelic insertion/deletion polymorphisms (indels) distributed throughout the human genome. Candidate indels were identified by comparison of overlapping genomic or cDNA sequences. Average confirmation rate for indels with a > or =2-nt allele-length difference was 58%, but the confirmation rate for indels with a 1-nt length difference was only 14%. The vast majority of the human diallelic indels were monomorphic in chimpanzees and gorillas. The ratio of deletionrcolon;insertion mutations was 4.1. Allele frequencies for the indels were measured in Europeans, Africans, Japanese, and Native Americans. New alleles were generally lower in frequency than old alleles. This tendency was most pronounced for the Africans, who are likely to be closest among the four groups to the original modern human population. Diallelic indels comprise approximately 8% of all human polymorphisms. Their abundance and ease of analysis make them useful for many applications.


Nature | 2001

Comparison of human genetic and sequence-based physical maps

Adong Yu; Chengfeng Zhao; Ying Fan; Wonhee Jang; Andrew J. Mungall; Panos Deloukas; Anne S. Olsen; Norman A. Doggett; Nader Ghebranious; Karl W. Broman; James L. Weber

Recombination is the exchange of information between two homologous chromosomes during meiosis. The rate of recombination per nucleotide, which profoundly affects the evolution of chromosomal segments, is calculated by comparing genetic and physical maps. Human physical maps have been constructed using cytogenetics, overlapping DNA clones and radiation hybrids; but the ultimate and by far the most accurate physical map is the actual nucleotide sequence. The completion of the draft human genomic sequence provides us with the best opportunity yet to compare the genetic and physical maps. Here we describe our estimates of female, male and sex-average recombination rates for about 60% of the genome. Recombination rates varied greatly along each chromosome, from 0 to at least 9 centiMorgans per megabase (cM Mb-1). Among several sequence and marker parameters tested, only relative marker position along the metacentric chromosomes in males correlated strongly with recombination rate. We identified several chromosomal regions up to 6 Mb in length with particularly low (deserts) or high (jungles) recombination rates. Linkage disequilibrium was much more common and extended for greater distances in the deserts than in the jungles.


American Journal of Human Genetics | 2004

Homozygous WNT3 Mutation Causes Tetra-Amelia in a Large Consanguineous Family

Stephan Niemann; Chengfeng Zhao; Filon Pascu; Ulrich Stahl; Ute Aulepp; Lee Niswander; James L. Weber; Ulrich Müller

Tetra-amelia is a rare human genetic disorder characterized by complete absence of all four limbs and other anomalies. We studied a consanguineous family with four affected fetuses displaying autosomal recessive tetra-amelia and craniofacial and urogenital defects. By homozygosity mapping, the disease locus was assigned to chromosome 17q21, with a maximum multipoint LOD score of 2.9 at markers D17S931, D17S1785, D17SS1827, and D17S1868. Further fine mapping defined a critical interval of approximately 8.9 Mb between D17S1299 and D17S797. We identified a homozygous nonsense mutation (Q83X) in the WNT3 gene in affected fetuses of the family. WNT3, a human homologue of the Drosophila wingless gene, encodes a member of the WNT family known to play key roles in embryonic development. The Q83X mutation truncates WNT3 at its amino terminus, suggesting that loss of function is the most likely cause of the disorder. Our findings contrast with the observation of early lethality in mice homozygous for null alleles of Wnt3. To our knowledge, this is the first report of a mutation in a WNT gene associated with a Mendelian disorder. The identification of a WNT3 mutation in tetra-amelia indicates that WNT3 is required at the earliest stages of human limb formation and for craniofacial and urogenital development.


PLOS Genetics | 2008

The Genetic Structure of Pacific Islanders

Jonathan S. Friedlaender; Françoise R. Friedlaender; Floyd A. Reed; Kenneth K. Kidd; Judith R. Kidd; Geoffrey K. Chambers; Rodney Arthur Lea; Jun-Hun Loo; George Koki; Jason A. Hodgson; D. Andrew Merriwether; James L. Weber

Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small “Austronesian” genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there.

Collaboration


Dive into the James L. Weber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl W. Broman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Val C. Sheffield

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth H. Buetow

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Geoffrey M. Duyk

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge