Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Bullard is active.

Publication


Featured researches published by James M. Bullard.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of PolC reveals unique DNA binding and fidelity determinants

Ronald J. Evans; Douglas R. Davies; James M. Bullard; Jeffrey Christensen; Louis S. Green; Joseph Guiles; Janice D. Pata; Wendy Ribble; Nebojsa Janjic; Thale Jarvis

PolC is the polymerase responsible for genome duplication in many Gram-positive bacteria and represents an attractive target for antibacterial development. We have determined the 2.4-Å resolution crystal structure of Geobacillus kaustophilus PolC in a ternary complex with DNA and dGTP. The structure reveals nascent base pair interactions that lead to highly accurate nucleotide incorporation. A unique β-strand motif in the PolC thumb domain contacts the minor groove, allowing replication errors to be sensed up to 8 nt upstream of the active site. PolC exhibits the potential for large-scale conformational flexibility, which could encompass the catalytic residues. The structure suggests a mechanism by which the active site can communicate with the rest of the replisome to trigger proofreading after nucleotide misincorporation, leading to an integrated model for controlling the dynamic switch between replicative and repair polymerases. This ternary complex of a cellular replicative polymerase affords insights into polymerase fidelity, evolution, and structural diversity.


Journal of Antimicrobial Chemotherapy | 2009

Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections

Ian A. Critchley; Louis S. Green; Casey L. Young; James M. Bullard; Ronald J. Evans; Melissa Price; Thale Jarvis; Joseph Guiles; Nebojsa Janjic; Urs A. Ochsner

OBJECTIVES The aim of this study was to characterize the antimicrobial profile of REP3123, a novel inhibitor of methionyl-tRNA synthetase (MetRS) in development for the treatment of Clostridium difficile infection. METHODS The spectrum of activity of REP3123 was determined by susceptibility testing of C. difficile and non-target organisms. The mode of action was studied by enzyme inhibition assays, macromolecular synthesis assays, target overexpression and selection of spontaneous resistant mutants. RESULTS REP3123 was active against a collection of 108 clinical isolates of C. difficile and against epidemic, moxifloxacin-resistant BI/NAP1/027 strains (MIC range=0.5-1 mg/L and MIC(90) = 1 mg/L). The spectrum of activity included clinically important aerobic Gram-positive cocci such as Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Enterococcus faecium (MIC(90)s < 1 mg/L), but REP3123 was not active against most Gram-negative bacteria. REP3123 targeted C. difficile MetRS with a calculated inhibition constant (K(i)) of 0.020 nM, and selectivity was >1000-fold over human mitochondrial and cytoplasmic MetRS. The specific mode of action within bacterial cells was demonstrated by macromolecular synthesis assays that showed inhibition of protein synthesis by REP3123, and by metS overexpression, which resulted in a 16-fold increase in MIC for REP3123. Spontaneous REP3123-resistant mutants of C. difficile (MICs, 4-128 mg/L) arose with frequencies of 10(-8)-10(-9) and harboured distinct point mutations within the metS gene, resulting in 13 different amino acid substitutions. Most of the MetRS substitutions caused reduced catalytic efficiency and a growth fitness burden. CONCLUSIONS REP3123 demonstrated a favourable microbiological profile and was found to target C. difficile with high specificity and selectivity.


Antimicrobial Agents and Chemotherapy | 2009

Inhibition of methionyl-tRNA synthetase by REP8839 and effects of resistance mutations on enzyme activity.

Louis S. Green; James M. Bullard; Wendy Ribble; Frank B. Dean; David F. Ayers; Urs Ochsner; Nebojsa Janjic; Thale Jarvis

ABSTRACT REP8839 is a selective inhibitor of methionyl-tRNA synthetase (MetRS) with antibacterial activity against a variety of gram-positive organisms. We determined REP8839 potency against Staphylococcus aureus MetRS and assessed its selectivity for bacterial versus human orthologs of MetRS. The inhibition constant (Ki) of REP8839 was 10 pM for Staphylococcus aureus MetRS. Inhibition of MetRS by REP8839 was competitive with methionine and uncompetitive with ATP. Thus, high physiological ATP levels would actually facilitate optimal binding of the inhibitor. While many gram-positive bacteria, such as Staphylococcus aureus, express exclusively the MetRS1 subtype, many gram-negative bacteria express an alternative homolog called MetRS2. Some gram-positive bacteria, such as Streptococcus pneumoniae and Bacillus anthracis, express both MetRS1 and MetRS2. MetRS2 orthologs were considerably less susceptible to REP8839 inhibition. REP8839 inhibition of human mitochondrial MetRS was 1,000-fold weaker than inhibition of Staphylococcus aureus MetRS; inhibition of human cytoplasmic MetRS was not detectable, corresponding to >1,000,000-fold selectivity for the bacterial target relative to its cytoplasmic counterpart. Mutations in MetRS that confer reduced susceptibility to REP8839 were examined. The mutant MetRS enzymes generally exhibited substantially impaired catalytic activity, particularly in aminoacylation turnover rates. REP8839 Ki values ranged from 4- to 190,000-fold higher for the mutant enzymes than for wild-type MetRS. These observations provide a potential mechanistic explanation for the reduced growth fitness observed with MetRS mutant strains relative to that with wild-type Staphylococcus aureus.


Antimicrobial Agents and Chemotherapy | 2010

Discovery and Analysis of 4H-Pyridopyrimidines, a Class of Selective Bacterial Protein Synthesis Inhibitors

Wendy Ribble; Walter E. Hill; Urs A. Ochsner; Thale Jarvis; Joseph Guiles; Nebojsa Janjic; James M. Bullard

ABSTRACT Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation protein synthesis system composed of phenyl-tRNA synthetases, ribosomes, and ribosomal factors from Escherichia coli. This system, utilizing purified components, has been used for high-throughput screening of a small-molecule chemical library. We have identified a series of compounds that inhibit protein synthesis with 50% inhibitory concentrations (IC50s) ranging from 3 to 14 μM. This series of compounds all contained the same central scaffold composed of tetrahydropyrido[4,3-d]pyrimidin-4-ol (e.g., 4H-pyridopyrimidine). All analogs contained an ortho pyridine ring attached to the central scaffold in the 2 position and either a five- or a six-member ring tethered to the 6-methylene nitrogen atom of the central scaffold. These compounds inhibited the growth of E. coli, Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis, with MICs ranging from 0.25 to 32 μg/ml. Macromolecular synthesis (MMS) assays with E. coli and S. aureus confirmed that antibacterial activity resulted from specific inhibition of protein synthesis. Assays were developed for the steps performed by each component of the system in order to ascertain the target of the compounds, and the ribosome was found to be the site of inhibition.


Journal of Biological Chemistry | 2005

Discovery and Characterization of the Cryptic Ψ Subunit of the Pseudomonad DNA Replicase

Thale Jarvis; Amber A. Beaudry; James M. Bullard; Urs A. Ochsner; H. Garry Dallmann; Charles S. McHenry

We previously reconstituted a minimal DNA replicase from Pseudomonas aeruginosa consisting of α and ϵ (polymerase and editing nuclease), β (processivity factor), and the essential τ, δ, and δ′ components of the clamp loader complex (Jarvis, T., Beaudry, A., Bullard, J., Janjic, N., and McHenry, C. (2005) J. Biol. Chem. 280, 7890-7900). In Escherichia coli DNA polymerase III holoenzyme, χ and Ψ are tightly associated clamp loader accessory subunits. The addition of E. coli χΨ to the minimal P. aeruginosa replicase stimulated its activity, suggesting the existence of χ and Ψ counterparts in P. aeruginosa. The P. aeruginosa χ subunit was recognizable from sequence similarity, but Ψ was not. Here we report purification of an endogenous replication complex from P. aeruginosa. Identification of the components led to the discovery of the cryptic Ψ subunit, encoded by holD. P. aeruginosa χ and Ψ were co-expressed and purified as a 1:1 complex. P. aeruginosa χΨ increased the specific activity of τ3δδ′ 25-fold and enabled the holoenzyme to function under physiological salt conditions. A synergistic effect between χΨ and single-stranded DNA binding protein was observed. Sequence similarity to P. aeruginosa Ψ allowed us to identify Ψ subunits from several other Pseudomonads and to predict probable translational start sites for this protein family. This represents the first identification of a highly divergent branch of the Ψ family and confirms the existence of Ψ in several organisms in which Ψ was not identifiable based on sequence similarity alone.


Antimicrobial Agents and Chemotherapy | 2016

Discovery and Analysis of Natural Product Compounds Inhibiting Protein Synthesis in Pseudomonas aeruginosa

Yanmei Hu; Megan Keniry; Stephanie O. Palmer; James M. Bullard

ABSTRACT Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have developed a poly(U) mRNA-directed aminoacylation/translation (A/T) protein synthesis system composed of phenylalanyl-tRNA synthetases (PheRS), ribosomes, and ribosomal factors from Pseudomonas aeruginosa. This system has been used for high-throughput screening of a natural-compound library. Assays were developed for each component of the system to ascertain the specific target of inhibitory compounds. In high-throughput screens, 13 compounds were identified that inhibit protein synthesis with 50% inhibitory concentrations ranging from 0.3 to >80 μM. MICs were determined for the compounds against the growth of a panel of pathogenic organisms, including Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Moraxella catarrhalis, P. aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Three of the compounds were observed to have broad-spectrum activity and inhibited a hypersensitive strain of P. aeruginosa with MICs of 8 to 16 μg/ml. The molecular target of each of the three compounds was determined to be PheRS. One compound was found to be bacteriostatic, and one compound was bactericidal against both Gram-positive and Gram-negative pathogens. The third compound was observed to be bacteriostatic against Gram-positive and bactericidal against Gram-negative bacteria. All three compounds were competitive with the substrate ATP; however, one compound was competitive, one was uncompetitive, and one noncompetitive with the amino acid substrate. Macromolecular synthesis assays confirm the compounds inhibit protein synthesis. The compounds were shown to be more than 25,000-fold less active than the control staurosporine in cytotoxicity MTT testing in human cell lines.


PLOS ONE | 2013

Two homologous EF-G proteins from Pseudomonas aeruginosa exhibit distinct functions.

Stephanie O. Palmer; Edna Y. Rangel; Yanmei Hu; Alexis T. Tran; James M. Bullard

Genes encoding two proteins corresponding to elongation factor G (EF-G) were cloned from Pseudomonas aeruginosa. The proteins encoded by these genes are both members of the EFG I subfamily. The gene encoding one of the forms of EF-G is located in the str operon and the resulting protein is referred to as EF-G1A while the gene encoding the other form of EF-G is located in another part of the genome and the resulting protein is referred to as EF-G1B. These proteins were expressed and purified to 98% homogeneity. Sequence analysis indicated the two proteins are 90/84% similar/identical. In other organisms containing multiple forms of EF-G a lower degree of similarity is seen. When assayed in a poly(U)-directed poly-phenylalanine translation system, EF-G1B was 75-fold more active than EF-G1A. EF-G1A pre-incubate with ribosomes in the presence of the ribosome recycling factor (RRF) decreased polymerization of poly-phenylalanine upon addition of EF-G1B in poly(U)-directed translation suggesting a role for EF-G1A in uncoupling of the ribosome into its constituent subunits. Both forms of P. aeruginosa EF-G were active in ribosome dependent GTPase activity. The kinetic parameters (K M) for the interaction of EF-G1A and EF-G1B with GTP were 85 and 70 μM, respectively. However, EF-G1B exhibited a 5-fold greater turnover number (observed k cat) for the hydrolysis of GTP than EF-G1A; 0.2 s-1 vs. 0.04 s-1. These values resulted in specificity constants (k cat obs/K M) for EF-G1A and EF-G1B of 0.5 x 103 s-1 M-1 and 3.0 x 103 s-1 M-1, respectively. The antibiotic fusidic acid (FA) completely inhibited poly(U)-dependent protein synthesis containing P. aeruginosa EF-G1B, but the same protein synthesis system containing EF-G1A was not affected. Likewise, the activity of EF-G1B in ribosome dependent GTPase assays was completely inhibited by FA, while the activity of EF-G1A was not affected.


Journal of Biomolecular Screening | 2015

Identification of Chemical Compounds That Inhibit the Function of Glutamyl-tRNA Synthetase from Pseudomonas aeruginosa

Yanmei Hu; Edgar Guerrero; Megan Keniry; Joel Manrrique; James M. Bullard

Pseudomonas aeruginosa glutamyl-tRNA synthetase (GluRS) was overexpressed in Escherichia coli. Sequence analysis indicated that P. aeruginosa GluRS is a discriminating GluRS and, similar to other GluRS proteins, requires the presence of tRNAGlu to produce a glutamyl-AMP intermediate. Kinetic parameters for interaction with tRNA were determined and the kcat and KM were 0.8 s–1 and 0.68 µM, respectively, resulting in a kcat/KM of 1.18 s–1 µM–1. A robust aminoacylation-based scintillation proximity assay (SPA) assay was developed and 800 natural products and 890 synthetic compounds were screened for inhibitory activity against P. aeruginosa GluRS. Fourteen compounds with inhibitory activity were identified. IC50s were in the low micromolar range. The minimum inhibitory concentration (MIC) was determined for each of the compounds against a panel of pathogenic bacteria. Two compounds, BT_03F04 and BT_04B09, inhibited GluRS with IC50s of 21.9 and 24.9 µM, respectively, and both exhibited promising MICs against Gram-positive bacteria. Time-kill studies indicated that one compound was bactericidal and one was bacteriostatic against Gram-positive bacteria. BT_03F04 was found to be noncompetitive with both ATP and glutamic acid, and BT_04B09 was competitive with glutamic acid but noncompetitive with ATP. The compounds were not observed to be toxic to mammalian cells in MTT assays.


Organic and medicinal chemistry letters | 2012

Development of 4H-pyridopyrimidines: a class of selective bacterial protein synthesis inhibitors.

Joseph Guiles; Andras Toro; Urs Ochsner; James M. Bullard

Background We have identified a series of compounds that inhibit protein synthesis in bacteria. Initial IC50s in aminoacylation/translation (A/T) assays ranged from 3 to14 μM. This series of compounds are variations on a 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4-ol scaffold (e.g., 4H-pyridopyrimidine). Methods Greater than 80 analogs were prepared to investigate the structure-activity relationship (SAR). Structural modifications included changes in the central ring and substituent modifications in its periphery focusing on the 2- and 6-positions. An A/T system was used to determine IC50 values for activity of the analogs in biochemical assays. Minimum inhibitory concentrations (MIC) were determined for each analog against cultures of Enterococcus faecalis, Moraxella catarrhalis, Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Escherichia coli tolC mutants and E. coli modified with PMBN. Results Modifications to the 2-(pyridin-2-yl) ring resulted in complete inactivation of the compounds. However, certain modifications at the 6-position resulted in increased antimicrobial potency. The optimized compounds inhibited the growth of E. faecalis, M. catarrhalis, H. influenzae, S. pneumoniae, S. aureus, E. coli tolC, mutants and E. coli modified with PMBN with MIC values of 4, ≤ 0.12, 1, 2, 4, 1, 1 μg/ml, respectively. IC50 values in biochemical assay were reduced to mid-nanomolar range. Conclusion 4H-pyridopyrimidine analogs demonstrate broad-spectrum inhibition of bacterial growth and modification of the compounds establishes SAR.


SLAS DISCOVERY: Advancing Life Sciences R&D | 2018

Discovery and Characterization of Chemical Compounds That Inhibit the Function of Aspartyl-tRNA Synthetase from Pseudomonas aeruginosa

Araceli Corona; Stephanie O. Palmer; Regina Zamacona; Benjamin Mendez; Frank B. Dean; James M. Bullard

Pseudomonas aeruginosa, an opportunistic pathogen, is highly susceptible to developing resistance to multiple antibiotics. The gene encoding aspartyl-tRNA synthetase (AspRS) from P. aeruginosa was cloned and the resulting protein characterized. AspRS was kinetically evaluated, and the KM values for aspartic acid, ATP, and tRNA were 170, 495, and 0.5 μM, respectively. AspRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 1690 chemical compounds, resulting in the identification of two inhibitory compounds, BT02A02 and BT02C05. The minimum inhibitory concentrations (MICs) were determined against nine clinically relevant bacterial strains, including efflux pump mutant and hypersensitive strains of P. aeruginosa. The compounds displayed broad-spectrum antibacterial activity and inhibited growth of the efflux and hypersensitive strains with MICs of 16 μg/mL. Growth of wild-type strains were unaffected, indicating that efflux was likely responsible for this lack of activity. BT02A02 did not inhibit growth of human cell cultures at any concentration. However, BT02C05 did inhibit human cell cultures with a cytotoxicity concentration (CC50) of 61.6 μg/mL. The compounds did not compete with either aspartic acid or ATP for binding AspRS, indicating that the mechanism of action of the compound occurs outside the active site of aminoacylation.

Collaboration


Dive into the James M. Bullard's collaboration.

Top Co-Authors

Avatar

Yanmei Hu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie O. Palmer

University of Texas–Pan American

View shared research outputs
Top Co-Authors

Avatar

Frank B. Dean

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Louis S. Green

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Urs A. Ochsner

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Alejandra Bernal

The University of Texas Rio Grande Valley

View shared research outputs
Top Co-Authors

Avatar

Charles S. McHenry

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge