Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thale Jarvis is active.

Publication


Featured researches published by Thale Jarvis.


Molecular therapy. Nucleic acids | 2014

Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents

John Rohloff; Amy D. Gelinas; Thale Jarvis; Urs A. Ochsner; Daniel J. Schneider; Larry Gold; Nebojsa Janjic

Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the “diversity gap” between nucleic acid–based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets

Douglas R. Davies; Amy D. Gelinas; Chi Zhang; John Rohloff; Jeff Carter; D O'Connell; Sheela Waugh; S.K Wolk; Wes Mayfield; Alex B. Burgin; T.E Edwards; Lance J. Stewart; Larry Gold; Nebojsa Janjic; Thale Jarvis

Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets.


Journal of Biological Chemistry | 1996

Optimizing the Cell Efficacy of Synthetic Ribozymes SITE SELECTION AND CHEMICAL MODIFICATIONS OF RIBOZYMES TARGETING THE PROTO-ONCOGENE c-myb

Thale Jarvis; Francine E. Wincott; Laverna J. Alby; James McSwiggen; Leonid Beigelman; John Gustofson; Anthony Direnzo; Kurt Levy; Melissa Arthur; Jasenka Matulic-Adamic; Alexander Karpeisky; Carolyn Gonzalez; Tod Woolf; Nassim Usman; Dan T. Stinchcomb

Expression of the proto-oncogene c-myb is necessary for proliferation of vascular smooth muscle cells. We have developed synthetic hammerhead ribozymes that recognize and cleave c-myb RNA, thereby inhibiting cell proliferation. Herein, we describe a method for the selection of hammerhead ribozyme cleavage sites and optimization of chemical modifications that maximize cell efficacy. In vitro assays were used to determine the relative accessibility of the ribozyme target sites for binding and cleavage. Several ribozymes thus identified showed efficacy in inhibiting smooth muscle cell proliferation relative to catalytically inactive controls. A combination of modifications including several phosphorothioate linkages at the 5′-end of the ribozyme and an extensively modified catalytic core resulted in substantially increased cell efficacy. A variety of different 2′-modifications at positions U4 and U7 that confer nuclease resistance gave comparable levels of cell efficacy. The lengths of the ribozyme binding arms were varied; optimal cell efficacy was observed with relatively short sequences (13-15 total nucleotides). These synthetic ribozymes have potential as therapeutics for hyperproliferative disorders such as restenosis and cancer. The chemical motifs that give optimal ribozyme activity in smooth muscle cell assays may be applicable to other cell types and other molecular targets.


Expert Opinion on Investigational Drugs | 2007

Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents

Urs A. Ochsner; Xicheng Sun; Thale Jarvis; Ian A. Critchley; Nebojsa Janjic

The emergence of resistance to existing antibiotics demands the development of novel antimicrobial agents directed against novel targets. Historically, bacterial cell wall synthesis, protein, and DNA and RNA synthesis have been major targets of very successful classes of antibiotics such as β-lactams, glycopeptides, macrolides, aminoglycosides, tetracyclines, rifampicins and quinolones. Recently, efforts have been made to develop novel agents against validated targets in these pathways but also against new, previously unexploited targets. The era of genomics has provided insights into novel targets in microbial pathogens. Among the less exploited – but still promising – targets is the family of 20 aminoacyl-tRNA synthetases (aaRSs), which are essential for protein synthesis. These targets have been validated in nature as aaRS inhibition has been shown as the specific mode of action for many natural antimicrobial agents synthesized by bacteria and fungi. Therefore, aaRSs have the potential to be targeted by novel agents either from synthetic or natural sources to yield specific and selective anti-infectives. Numerous high-throughput screening programs aimed at identifying aaRS inhibitors have been performed over the last 20 years. A large number of promising lead compounds have been identified but only a few agents have moved forward into clinical development. This review provides an update on the present strategies to develop novel aaRS inhibitors as anti-infective drugs.


Journal of Biological Chemistry | 2014

Chemically Modified DNA Aptamers Bind Interleukin-6 with High Affinity and Inhibit Signaling by Blocking Its Interaction with Interleukin-6 Receptor

Shashi Gupta; Masao Hirota; Sheela Waugh; Ikuo Murakami; Tomoki Suzuki; Masahiro Muraguchi; Masafumi Shibamori; Yuichi Ishikawa; Thale Jarvis; Jeffrey D. Carter; Chi Zhang; Bharat Gawande; Michael Vrkljan; Nebojsa Janjic; Daniel J. Schneider

Background: IL-6 signaling is a key component of inflammatory diseases. Results: Modified DNA aptamers that inhibit IL-6 signaling were discovered and optimized. Conclusion: Modified aptamers are stable in serum and block the interaction of IL-6 with its receptor IL-6Rα. Significance: Modified aptamers are a new class of antagonist with properties potentially suitable for clinical treatment of inflammation. Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates immune and inflammatory responses, and its overproduction is a hallmark of inflammatory diseases. Inhibition of IL-6 signaling with the anti-IL-6 receptor antibody tocilizumab has provided some clinical benefit to patients; however, direct cytokine inhibition may be a more effective option. We used the systematic evolution of ligands by exponential enrichment (SELEX) process to discover slow off-rate modified aptamers (SOMAmers) with hydrophobic base modifications that inhibit IL-6 signaling in vitro. Two classes of IL-6 SOMAmers were isolated from modified DNA libraries containing 40 random positions and either 5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine (Nap-dU) replacing dT. These modifications facilitate the high affinity binding interaction with IL-6 and provide resistance against degradation by serum endonucleases. Post-SELEX optimization of one Bn-dU and one Nap-dU SOMAmer led to improvements in IL-6 binding (10-fold) and inhibition activity (greater than 20-fold), resulting in lead SOMAmers with sub-nanomolar affinity (Kd = 0.2 nm) and potency (IC50 = 0.2 nm). Although similar in inhibition properties, the two SOMAmers have unique sequences and different ortholog specificities. Furthermore, these SOMAmers were stable in human serum in vitro for more than 48 h. Both SOMAmers prevented IL-6 signaling by blocking the interaction of IL-6 with its receptor and inhibited the proliferation of tumor cells in vitro as effectively as tocilizumab. This new class of IL-6 inhibitor may be an effective therapeutic alternative for patients suffering from inflammatory diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure of PolC reveals unique DNA binding and fidelity determinants

Ronald J. Evans; Douglas R. Davies; James M. Bullard; Jeffrey Christensen; Louis S. Green; Joseph Guiles; Janice D. Pata; Wendy Ribble; Nebojsa Janjic; Thale Jarvis

PolC is the polymerase responsible for genome duplication in many Gram-positive bacteria and represents an attractive target for antibacterial development. We have determined the 2.4-Å resolution crystal structure of Geobacillus kaustophilus PolC in a ternary complex with DNA and dGTP. The structure reveals nascent base pair interactions that lead to highly accurate nucleotide incorporation. A unique β-strand motif in the PolC thumb domain contacts the minor groove, allowing replication errors to be sensed up to 8 nt upstream of the active site. PolC exhibits the potential for large-scale conformational flexibility, which could encompass the catalytic residues. The structure suggests a mechanism by which the active site can communicate with the rest of the replisome to trigger proofreading after nucleotide misincorporation, leading to an integrated model for controlling the dynamic switch between replicative and repair polymerases. This ternary complex of a cellular replicative polymerase affords insights into polymerase fidelity, evolution, and structural diversity.


Cold Spring Harbor Perspectives in Biology | 2012

Aptamers and the RNA World, Past and Present

Larry Gold; Nebojsa Janjic; Thale Jarvis; Dan Schneider; Jeffrey J. Walker; Sheri K. Wilcox; Dom Zichi

Aptamers and the SELEX process were discovered over two decades ago. These discoveries have spawned a productive academic and commercial industry. The collective results provide insights into biology, past and present, through an in vitro evolutionary exploration of the nature of nucleic acids and their potential roles in ancient life. Aptamers have helped usher in an RNA renaissance. Here we explore some of the evolution of the aptamer field and the insights it has provided for conceptualizing an RNA world, from its nascence to our current endeavor employing aptamers in human proteomics to discover biomarkers of health and disease.


PLOS ONE | 2012

Protein signature of lung cancer tissues.

Michael R. Mehan; Deborah Ayers; Derek Thirstrup; Wei Xiong; Rachel Ostroff; Edward N. Brody; Jeffrey J. Walker; Larry Gold; Thale Jarvis; Nebojsa Janjic; Geoffrey S. Baird; Sheri K. Wilcox

Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.


Journal of Biological Chemistry | 2014

Crystal Structure of Interleukin-6 in Complex with a Modified Nucleic Acid Ligand

Amy D. Gelinas; Douglas R. Davies; Thomas E. Edwards; John Rohloff; Jeffrey D. Carter; Chi Zhang; Shashi Gupta; Yuichi Ishikawa; Masao Hirota; Yuichiro Nakaishi; Thale Jarvis; Nebojsa Janjic

Background: Traditional aptamers favor polar interactions with protein binding partners. Results: The IL-6·SOMAmer structure reveals an interface rich in hydrophobic interactions that overlap the binding sites of IL-6 receptors. Conclusion: Hydrophobic modifications on DNA scaffolds generate diverse and novel structural motifs. Significance: Synthetic SOMAmers are potent, specific, and chemically versatile ligands with distinct binding properties compared with conventional aptamers. IL-6 is a secreted cytokine that functions through binding two cell surface receptors, IL-6Rα and gp130. Because of its involvement in the progression of several chronic inflammatory diseases, IL-6 is a target of pharmacologic interest. We have recently identified a novel class of ligands called SOMAmers (S low Off-rate Modified Aptamers) that bind IL-6 and inhibit its biologic activity. SOMAmers exploit the chemical diversity of protein-like side chains assembled on flexible nucleic acid scaffolds, resulting in an expanded repertoire of intra- and intermolecular interactions not achievable with conventional aptamers. Here, we report the co-crystal structure of a high affinity SOMAmer (Kd = 0.20 nm) modified at the 5-position of deoxyuridine in a complex with IL-6. The SOMAmer, comprised of a G-quartet domain and a stem-loop domain, engages IL-6 in a clamp-like manner over an extended surface exhibiting close shape complementarity with the protein. The interface is characterized by substantial hydrophobic interactions overlapping the binding surfaces of the IL-6Rα and gp130 receptors. The G-quartet domain retains considerable binding activity as a disconnected autonomous fragment (Kd = 270 nm). A single substitution from our diversely modified nucleotide library leads to a 37-fold enhancement in binding affinity of the G-quartet fragment (Kd = 7.4 nm). The ability to probe ligand surfaces in this manner is a powerful tool in the development of new therapeutic reagents with improved pharmacologic properties. The SOMAmer·IL-6 structure also expands our understanding of the diverse structural motifs achievable with modified nucleic acid libraries and elucidates the nature with which these unique ligands interact with their protein targets.


Journal of Antimicrobial Chemotherapy | 2009

Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections

Ian A. Critchley; Louis S. Green; Casey L. Young; James M. Bullard; Ronald J. Evans; Melissa Price; Thale Jarvis; Joseph Guiles; Nebojsa Janjic; Urs A. Ochsner

OBJECTIVES The aim of this study was to characterize the antimicrobial profile of REP3123, a novel inhibitor of methionyl-tRNA synthetase (MetRS) in development for the treatment of Clostridium difficile infection. METHODS The spectrum of activity of REP3123 was determined by susceptibility testing of C. difficile and non-target organisms. The mode of action was studied by enzyme inhibition assays, macromolecular synthesis assays, target overexpression and selection of spontaneous resistant mutants. RESULTS REP3123 was active against a collection of 108 clinical isolates of C. difficile and against epidemic, moxifloxacin-resistant BI/NAP1/027 strains (MIC range=0.5-1 mg/L and MIC(90) = 1 mg/L). The spectrum of activity included clinically important aerobic Gram-positive cocci such as Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis and Enterococcus faecium (MIC(90)s < 1 mg/L), but REP3123 was not active against most Gram-negative bacteria. REP3123 targeted C. difficile MetRS with a calculated inhibition constant (K(i)) of 0.020 nM, and selectivity was >1000-fold over human mitochondrial and cytoplasmic MetRS. The specific mode of action within bacterial cells was demonstrated by macromolecular synthesis assays that showed inhibition of protein synthesis by REP3123, and by metS overexpression, which resulted in a 16-fold increase in MIC for REP3123. Spontaneous REP3123-resistant mutants of C. difficile (MICs, 4-128 mg/L) arose with frequencies of 10(-8)-10(-9) and harboured distinct point mutations within the metS gene, resulting in 13 different amino acid substitutions. Most of the MetRS substitutions caused reduced catalytic efficiency and a growth fitness burden. CONCLUSIONS REP3123 demonstrated a favourable microbiological profile and was found to target C. difficile with high specificity and selectivity.

Collaboration


Dive into the Thale Jarvis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry Gold

Bayer HealthCare Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Schneider

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Urs A. Ochsner

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge