Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Eldred is active.

Publication


Featured researches published by James M. Eldred.


The New England Journal of Medicine | 2009

Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome

Elaine R. Mardis; Li Ding; David J. Dooling; David E. Larson; Michael D. McLellan; Ken Chen; Daniel C. Koboldt; Robert S. Fulton; Kim D. Delehaunty; Sean McGrath; Lucinda A. Fulton; Devin P. Locke; Vincent Magrini; Rachel Abbott; Tammi L. Vickery; Jerry S. Reed; Jody S. Robinson; Todd Wylie; Scott M. Smith; Lynn K. Carmichael; James M. Eldred; Christopher C. Harris; Jason Walker; Joshua B. Peck; Feiyu Du; Adam F. Dukes; Gabriel E. Sanderson; Anthony M. Brummett; Eric Clark; Joshua F. McMichael

BACKGROUND The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Nature | 2010

Genome remodelling in a basal-like breast cancer metastasis and xenograft.

Li Ding; Matthew J. Ellis; Shunqiang Li; David E. Larson; Ken Chen; John W. Wallis; Christopher C. Harris; Michael D. McLellan; Robert S. Fulton; Lucinda Fulton; Rachel Abbott; Jeremy Hoog; David J. Dooling; Daniel C. Koboldt; Heather K. Schmidt; Joelle Kalicki; Qunyuan Zhang; Lei Chen; Ling Lin; Michael C. Wendl; Joshua F. McMichael; Vincent Magrini; Lisa Cook; Sean McGrath; Tammi L. Vickery; Elizabeth L. Appelbaum; Katherine DeSchryver; Sherri R. Davies; Therese Guintoli; Li Lin

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


PLOS Biology | 2003

Viral Discovery and Sequence Recovery Using DNA Microarrays

David Wang; Anatoly Urisman; Yu-Tsueng Liu; Michael Springer; Thomas G. Ksiazek; Dean D. Erdman; Elaine R. Mardis; Matthew Hickenbotham; Vincent Magrini; James M. Eldred; J. Phillipe Latreille; Richard Wilson; Don Ganem; Joseph L. DeRisi

Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS) in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.


Nucleic Acids Research | 2016

DGIdb 2.0: mining clinically relevant drug–gene interactions

Alex H. Wagner; Adam Coffman; Benjamin J. Ainscough; Nicholas C. Spies; Zachary L. Skidmore; Katie M. Campbell; Kilannin Krysiak; Deng Pan; Joshua F. McMichael; James M. Eldred; Jason Walker; Richard Wilson; Elaine R. Mardis; Malachi Griffith; Obi L. Griffith

The Drug–Gene Interaction Database (DGIdb, www.dgidb.org) is a web resource that consolidates disparate data sources describing drug–gene interactions and gene druggability. It provides an intuitive graphical user interface and a documented application programming interface (API) for querying these data. DGIdb was assembled through an extensive manual curation effort, reflecting the combined information of twenty-seven sources. For DGIdb 2.0, substantial updates have been made to increase content and improve its usefulness as a resource for mining clinically actionable drug targets. Specifically, nine new sources of drug–gene interactions have been added, including seven resources specifically focused on interactions linked to clinical trials. These additions have more than doubled the overall count of drug–gene interactions. The total number of druggable gene claims has also increased by 30%. Importantly, a majority of the unrestricted, publicly-accessible sources used in DGIdb are now automatically updated on a weekly basis, providing the most current information for these sources. Finally, a new web view and API have been developed to allow searching for interactions by drug identifiers to complement existing gene-based search functionality. With these updates, DGIdb represents a comprehensive and user friendly tool for mining the druggable genome for precision medicine hypothesis generation.


Nature Communications | 2015

Patterns and functional implications of rare germline variants across 12 cancer types

Charles Lu; Mingchao Xie; Michael C. Wendl; Jiayin Wang; Michael D. McLellan; Mark D. M. Leiserson; Kuan-lin Huang; Matthew A. Wyczalkowski; Reyka Jayasinghe; Tapahsama Banerjee; Jie Ning; Piyush Tripathi; Qunyuan Zhang; Beifang Niu; Kai Ye; Heather K. Schmidt; Robert S. Fulton; Joshua F. McMichael; Prag Batra; Cyriac Kandoth; Maheetha Bharadwaj; Daniel C. Koboldt; Christopher A. Miller; Krishna L. Kanchi; James M. Eldred; David E. Larson; John S. Welch; Ming You; Bradley A. Ozenberger; Ramaswamy Govindan

Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.


Nature Genetics | 2017

CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer

Malachi Griffith; Nicholas C. Spies; Kilannin Krysiak; Joshua F. McMichael; Adam Coffman; Arpad M. Danos; Benjamin J. Ainscough; Cody Ramirez; Damian Tobias Rieke; Lynzey Kujan; Erica K. Barnell; Alex H. Wagner; Zachary L. Skidmore; Amber Wollam; Connor Liu; Martin R. Jones; Rachel L. Bilski; Robert Lesurf; Yan Yang Feng; Nakul M. Shah; Melika Bonakdar; Lee Trani; Matthew Matlock; Avinash Ramu; Katie M. Campbell; Gregory Spies; Aaron Graubert; Karthik Gangavarapu; James M. Eldred; David E. Larson

CIViC is an expert-crowdsourced knowledgebase for Clinical Interpretation of Variants in Cancer describing the therapeutic, prognostic, diagnostic and predisposing relevance of inherited and somatic variants of all types. CIViC is committed to open-source code, open-access content, public application programming interfaces (APIs) and provenance of supporting evidence to allow for the transparent creation of current and accurate variant interpretations for use in cancer precision medicine.


PLOS Computational Biology | 2015

Genome Modeling System: A Knowledge Management Platform for Genomics

Malachi Griffith; Obi L. Griffith; Scott M. Smith; Avinash Ramu; Matthew B. Callaway; Anthony M. Brummett; Michael J. Kiwala; Adam Coffman; Allison A. Regier; Benjamin J. Oberkfell; Gabriel E. Sanderson; Thomas P. Mooney; Nathaniel G. Nutter; Edward A. Belter; Feiyu Du; Robert T. L. Long; Travis E. Abbott; Ian T. Ferguson; David L. Morton; Mark M. Burnett; James V. Weible; Joshua B. Peck; Adam F. Dukes; Joshua F. McMichael; Justin T. Lolofie; Brian R. Derickson; Jasreet Hundal; Zachary L. Skidmore; Benjamin J. Ainscough; Nathan D. Dees

In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms.


bioRxiv | 2016

CIViC: A knowledgebase for expert-crowdsourcing the clinical interpretation of variants in cancer.

Malachi Griffith; Nicholas C. Spies; Kilannin Krysiak; Adam Coffman; Joshua F. McMichael; Benjamin J. Ainscough; Damian Tobias Rieke; Arpad M. Danos; Lynzey Kujan; Cody Ramirez; Alex H. Wagner; Zachary L. Skidmore; Connor Liu; Martin R. Jones; Rachel L. Bilski; Robert Lesurf; Erica K. Barnell; Nakul M. Shah; Melika Bonakdar; Lee Trani; Matthew Matlock; Avinash Ramu; Katie M. Campbell; Gregory Spies; Aaron Graubert; Karthik Gangavarapu; James M. Eldred; David E. Larson; Jason Walker; Benjamin M. Good

CIViC is an expert crowdsourced knowledgebase for Clinical Interpretation of Variants in Cancer (www.civicdb.org) describing the therapeutic, prognostic, and diagnostic relevance of inherited and somatic variants of all types. CIViC is committed to open source code, open access content, public application programming interfaces (APIs), and provenance of supporting evidence to allow for the transparent creation of current and accurate variant interpretations for use in cancer precision medicine.


Annals of Oncology | 2016

A genomic case study of mixed fibrolamellar hepatocellular carcinoma

Obi L. Griffith; Malachi Griffith; Kilannin Krysiak; Vincent Magrini; Avinash Ramu; Zachary L. Skidmore; Jason Kunisaki; Rachel Austin; Sean McGrath; Jin Zhang; Ryan Demeter; Tina Graves; James M. Eldred; Jason Walker; David E. Larson; Christopher A. Maher; Yiing Lin; William C. Chapman; Anand Mahadevan; Rebecca A. Miksad; Imad Nasser; Douglas W. Hanto; Elaine R. Mardis

We report the first comprehensive genomic analysis of a case of mixed conventional and fibrolamellar HCC (mFL-HCC). This study confirms the expression of DNAJB1:PRKACA, a fusion previously associated with pure FL-HCC but not conventional HCC, in mFL-HCC. These results indicate the DNAJB1:PRKACA fusion has diagnostic utility for both pure and mixed FL-HCC.


Cancer Research | 2015

Abstract PR01: Identifying clinically important somatic mutations through a knowledge-based approach

Benjamin J. Ainscough; Malachi Griffith; Jason Kunisaki; Adam Coffman; Joshua F. McMichael; James M. Eldred; Jason Walker; Robert S. Fulton; Richard Wilson; Obi L. Griffith; Elaine R. Mardis

Large-scale tumor sequencing projects, like The Cancer Genome Atlas (TCGA), have implicated thousands of somatic mutations in cancer. These initiatives have incentivized many improvements in somatic variant detection. However, we have observed that important pathogenic variants are often missed due to stringent filtering, tumor heterogeneity, tumor contamination of normal, low tumor purity, alignment challenges, and other issues. These idiosyncrasies can impede variant detection algorithms from reliably calling even the most clinically relevant variants. To rescue this missed variation we devised a knowledge based variant identification strategy. We mined the literature and other variant databases for pathogenic variation and assembled them into an integrated Database of Curated Mutations (DoCM - www.docm.info). The DoCM contains 488 variants across 63 genes implicated in 34 cancer types. We developed an algorithm to identify any pathogenic variant signal, for all variants in the DoCM, in aligned sequence data. As a proof of principle, we applied this approach to four cancer types sequenced by TCGA: acute myeloid leukemia (AML), breast cancer, ovarian carcinoma, and uterine corpus endometrial carcinoma. Obvious sequencing and alignment errors, like variants in homopolymer runs, were excluded from subsequent analysis by manual review. Across these four TCGA projects, which includes 1,840 individuals, 1,757 clinically relevant variants were identified, 1,223 of which had not been previously reported in TCGA studies. To validate this approach, custom capture probes were designed for all of the DoCM variants, new libraries constructed and deep sequencing performed on 96 tumor and matched normal samples from the AML and breast cancer TCGA projects. Following this strategy, we were able to confirm the rescue of clinically relevant somatic mutations that were missed in the original TCGA analysis. We propose a knowledge-driven variant detection approach be considered as standard practice to avoid false-negative calls of events likely to be clinically relevant Citation Format: Benjamin J. Ainscough, Malachi Griffith, Jason Kunisaki, Adam Coffman, Joshua F. McMichael, James M. Eldred, Jason R. Walker, Robert S. Fulton, Richard K. Wilson, Obi L. Griffith, Elaine R. Mardis. Identifying clinically important somatic mutations through a knowledge-based approach. [abstract]. In: Proceedings of the AACR Special Conference on Translation of the Cancer Genome; Feb 7-9, 2015; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2015;75(22 Suppl 1):Abstract nr PR01.

Collaboration


Dive into the James M. Eldred's collaboration.

Top Co-Authors

Avatar

David E. Larson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Malachi Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jason Walker

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joshua F. McMichael

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Adam Coffman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Ainscough

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Elaine R. Mardis

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Obi L. Griffith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kilannin Krysiak

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nicholas C. Spies

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge