Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Glownia is active.

Publication


Featured researches published by James M. Glownia.


Nature | 2010

Femtosecond electronic response of atoms to ultra-intense X-rays

L. Young; E. P. Kanter; B. Krässig; Yangmin Li; Anne Marie March; S. T. Pratt; Robin Santra; S. H. Southworth; Nina Rohringer; Louis F. DiMauro; G. Doumy; C. A. Roedig; N. Berrah; L. Fang; M. Hoener; P. H. Bucksbaum; James Cryan; Shambhu Ghimire; James M. Glownia; David A. Reis; John D. Bozek; Christoph Bostedt; M. Messerschmidt

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 1018 W cm−2, 1.5–0.6 nm, ∼105 X-ray photons per Å2). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse—by sequentially ejecting electrons—to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces ‘hollow’ atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.


Applied Physics Letters | 2012

X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

Sebastian Schorb; Tais Gorkhover; James Cryan; James M. Glownia; Mina Bionta; Ryan Coffee; Benjamin Erk; Rebecca Boll; Carlo Schmidt; Daniel Rolles; A. Rudenko; Arnaud Rouzée; M. Swiggers; S. Carron; Jean-Charles Castagna; John D. Bozek; Marc Messerschmidt; W. F. Schlotter; Christoph Bostedt

X-ray–optical pump–probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump–probe experiments with x-ray pulses from LCLS and other FEL sources.


Optics Express | 2010

Time-resolved pump-probe experiments at the LCLS

James M. Glownia; James Cryan; Jakob Andreasson; A. Belkacem; N. Berrah; Christoph Bostedt; John D. Bozek; Louis F. DiMauro; L. Fang; J. Frisch; Oliver Gessner; Markus Gühr; Janos Hajdu; Marcus P. Hertlein; M. Hoener; Gang Huang; Oleg Kornilov; J. P. Marangos; Anne Marie March; Brian K. McFarland; H. Merdji; Vladimir Petrovic; C. Raman; D. Ray; David A. Reis; M. Trigo; J. L. White; William E. White; Russell Wilcox; Linda Young

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.


Nature | 2016

Structure of photosystem II and substrate binding at room temperature.

Iris D. Young; Mohamed Ibrahim; Ruchira Chatterjee; Sheraz Gul; Franklin Fuller; Sergey Koroidov; Aaron S. Brewster; Rosalie Tran; Roberto Alonso-Mori; Thomas Kroll; Tara Michels-Clark; Hartawan Laksmono; Raymond G. Sierra; Claudiu A. Stan; Rana Hussein; Miao Zhang; Lacey Douthit; Markus Kubin; Casper de Lichtenberg; Long Vo Pham; Håkan Nilsson; Mun Hon Cheah; Dmitriy Shevela; Claudio Saracini; Mackenzie A. Bean; Ina Seuffert; Dimosthenis Sokaras; Tsu-Chien Weng; Ernest Pastor; Clemens Weninger

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.


Optics Express | 2011

Spectral encoding of x-ray/optical relative delay.

Mina Bionta; Henrik T. Lemke; James Cryan; James M. Glownia; Christoph Bostedt; Marco Cammarata; Jean-Charles Castagna; Y. Ding; David M. Fritz; Alan Fry; J. Krzywinski; Marc Messerschmidt; Sebastian Schorb; M. Swiggers; Ryan Coffee

We present a new technique for measuring the relative delay between a soft x-ray FEL pulse and an optical laser that indicates a sub 25 fs RMS measurement error. An ultra-short x-ray pulse photo-ionizes a semiconductor (Si(3)N(4)) membrane and changes the optical transmission. An optical continuum pulse with a temporally chirped bandwidth spanning 630 nm-710 nm interacts with the membrane such that the timing of the x-ray pulse can be determined from the onset of the spectral modulation of the transmitted optical pulse. This experiment demonstrates a nearly in situ single-shot measurement of the x-ray pulse arrival time relative to the ultra-short optical pulse.


Journal of Synchrotron Radiation | 2015

The X-ray Pump-Probe instrument at the Linac Coherent Light Source

Matthieu Chollet; Roberto Alonso-Mori; Marco Cammarata; Daniel S. Damiani; Jim Defever; James T. Delor; Yiping Feng; James M. Glownia; J. Brian Langton; S. Nelson; Kelley Ramsey; Marcin Sikorski; Sanghoon Song; Daniel Stefanescu; Venkat Srinivasan; Diling Zhu; Henrik T. Lemke; David M. Fritz

A description of the X-ray Pump–Probe (XPP) instrument at the Linac Coherent Light Source. is presented. Recent scientific highlights illustrate the versatility and the time-resolved X-ray diffraction and spectroscopy capabilities of the XPP instrument.


Structure | 2016

Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography

Christian G. Roessler; Rakhi Agarwal; Marc Allaire; Roberto Alonso-Mori; Babak Andi; José Fernando Ruguiero Bachega; Martin Bommer; Aaron S. Brewster; Michael C. Browne; Ruchira Chatterjee; Eunsun Cho; Aina E. Cohen; Matthew L. Cowan; Sammy Datwani; Victor L. Davidson; Jim Defever; Brent Eaton; Richard N. Ellson; Yiping Feng; Lucien P. Ghislain; James M. Glownia; Guangye Han; Johan Hattne; Julia Hellmich; Annie Heroux; Mohamed Ibrahim; Jan Kern; A. Kuczewski; Henrik T. Lemke; Pinghua Liu

X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples.


Nature Materials | 2016

Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4

M. P. M. Dean; Yue Cao; X. Liu; Simon Wall; Diling Zhu; Roman Mankowsky; V. Thampy; X. M. Chen; J. G. Vale; D. Casa; Jungho Kim; Ayman Said; P. Juhas; Roberto Alonso-Mori; James M. Glownia; Marcin Sikorski; Sanghoon Song; M. Kozina; Henrik T. Lemke; L. Patthey; Shigeki Owada; Tetsuo Katayama; Makina Yabashi; Yoshikazu Tanaka; Tadashi Togashi; Jian Liu; C. Rayan Serrao; B. J. Kim; L. Huber; C. L. Chang

Measuring how the magnetic correlations evolve in doped Mott insulators has greatly improved our understanding of the pseudogap, non-Fermi liquids and high-temperature superconductivity. Recently, photo-excitation has been used to induce similarly exotic states transiently. However, the lack of available probes of magnetic correlations in the time domain hinders our understanding of these photo-induced states and how they could be controlled. Here, we implement magnetic resonant inelastic X-ray scattering at a free-electron laser to directly determine the magnetic dynamics after photo-doping the Mott insulator Sr2IrO4. We find that the non-equilibrium state, 2 ps after the excitation, exhibits strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. These two-dimensional (2D) in-plane Néel correlations recover within a few picoseconds, whereas the three-dimensional (3D) long-range magnetic order restores on a fluence-dependent timescale of a few hundred picoseconds. The marked difference in these two timescales implies that the dimensionality of magnetic correlations is vital for our understanding of ultrafast magnetic dynamics.


Review of Scientific Instruments | 2014

Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

Diling Zhu; Yiping Feng; Stanislav Stoupin; Sergey Terentyev; Henrik T. Lemke; David M. Fritz; Matthieu Chollet; James M. Glownia; Roberto Alonso-Mori; Marcin Sikorski; Sanghoon Song; Tim Brandt van Driel; Garth J. Williams; Marc Messerschmidt; Sébastien Boutet; Vladimir Blank; Yuri Shvyd'ko

A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ~100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.


Journal of Synchrotron Radiation | 2015

The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

Roberto Alonso-Mori; Chiara Caronna; Matthieu Chollet; Robin Curtis; Daniel S. Damiani; Jim Defever; Yiping Feng; Daniel L. Flath; James M. Glownia; Sooheyong Lee; Henrik T. Lemke; S. Nelson; Eric Bong; Marcin Sikorski; Sanghoon Song; Venkat Srinivasan; Daniel Stefanescu; Diling Zhu

A description of the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source is presented. Recent highlights illustrate the coherence properties of the source as well as some recent dynamics measurements and future directions.

Collaboration


Dive into the James M. Glownia's collaboration.

Top Co-Authors

Avatar

Diling Zhu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthieu Chollet

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Henrik T. Lemke

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sanghoon Song

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Cryan

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marcin Sikorski

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Roberto Alonso-Mori

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ryan Coffee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Nelson

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge