Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan Coffee is active.

Publication


Featured researches published by Ryan Coffee.


Applied Physics Letters | 2012

X-ray–optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

Sebastian Schorb; Tais Gorkhover; James Cryan; James M. Glownia; Mina Bionta; Ryan Coffee; Benjamin Erk; Rebecca Boll; Carlo Schmidt; Daniel Rolles; A. Rudenko; Arnaud Rouzée; M. Swiggers; S. Carron; Jean-Charles Castagna; John D. Bozek; Marc Messerschmidt; W. F. Schlotter; Christoph Bostedt

X-ray–optical pump–probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump–probe experiments with x-ray pulses from LCLS and other FEL sources.


Nature Materials | 2013

Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo

Catherine Graves; A. H. Reid; Tianhan Wang; Benny Wu; S. de Jong; K. Vahaplar; I. Radu; David Bernstein; M. Messerschmidt; L. Müller; Ryan Coffee; Mina Bionta; Sascha W. Epp; Robert Hartmann; N. Kimmel; G. Hauser; A. Hartmann; P. Holl; H. Gorke; Johan H. Mentink; A. Tsukamoto; A. Fognini; J. J. Turner; W. F. Schlotter; D. Rolles; H. Soltau; L. Struder; Yves Acremann; A.V. Kimel; Andrei Kirilyuk

Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic materials microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.


Nature Methods | 2012

Lipidic phase membrane protein serial femtosecond crystallography.

Linda C. Johansson; David Arnlund; Thomas A. White; Gergely Katona; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Robert L. Shoeman; Lukas Lomb; Erik Malmerberg; Jan Davidsson; Karol Nass; Mengning Liang; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Miriam Barthelmess; Anton Barty; Michael J. Bogan; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Physical Review Letters | 2014

X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

Jochen Küpper; Stephan Stern; Lotte Holmegaard; Frank Filsinger; Arnaud Rouzée; Artem Rudenko; Per Johnsson; Andrew V. Martin; Marcus Adolph; Andrew Aquila; Sasa Bajt; Anton Barty; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Peter Holl; André Hömke; Nils Kimmel; Faton Krasniqi

We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.


Nature | 2012

X-ray and optical wave mixing

Thornton Glover; David M. Fritz; Marco Cammarata; T. K. Allison; Sinisa Coh; Jan M. Feldkamp; Henrik T. Lemke; Diling Zhu; Yiping Feng; Ryan Coffee; M. Fuchs; S. Ghimire; Jun Chen; Sharon Shwartz; David A. Reis; S. E. Harris; Jerome Hastings

Light–matter interactions are ubiquitous, and underpin a wide range of basic research fields and applied technologies. Although optical interactions have been intensively studied, their microscopic details are often poorly understood and have so far not been directly measurable. X-ray and optical wave mixing was proposed nearly half a century ago as an atomic-scale probe of optical interactions but has not yet been observed owing to a lack of sufficiently intense X-ray sources. Here we use an X-ray laser to demonstrate X-ray and optical sum-frequency generation. The underlying nonlinearity is a reciprocal-space probe of the optically induced charges and associated microscopic fields that arise in an illuminated material. To within the experimental errors, the measured efficiency is consistent with first-principles calculations of microscopic optical polarization in diamond. The ability to probe optical interactions on the atomic scale offers new opportunities in both basic and applied areas of science.


Optics Express | 2010

Time-resolved pump-probe experiments at the LCLS

James M. Glownia; James Cryan; Jakob Andreasson; A. Belkacem; N. Berrah; Christoph Bostedt; John D. Bozek; Louis F. DiMauro; L. Fang; J. Frisch; Oliver Gessner; Markus Gühr; Janos Hajdu; Marcus P. Hertlein; M. Hoener; Gang Huang; Oleg Kornilov; J. P. Marangos; Anne Marie March; Brian K. McFarland; H. Merdji; Vladimir Petrovic; C. Raman; D. Ray; David A. Reis; M. Trigo; J. L. White; William E. White; Russell Wilcox; Linda Young

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.


Physical Review Letters | 2010

Double Core-Hole Production in N2: Beating the Auger Clock

Li Fang; M. Hoener; Oliver Gessner; Francesco Tarantelli; Stephen T. Pratt; Oleg Kornilov; Christian Buth; Markus Gühr; E. P. Kanter; Christoph Bostedt; John D. Bozek; Phil Bucksbaum; Mau Hsiung Chen; Ryan Coffee; James Cryan; M. Glownia; Edwin Kukk; Stephen R. Leone; N. Berrah

We investigate the creation of double K-shell holes in N2 molecules via sequential absorption of two photons on a time scale shorter than the core-hole lifetime by using intense x-ray pulses from the Linac Coherent Light Source free electron laser. The production and decay of these states is characterized by photoelectron spectroscopy and Auger electron spectroscopy. In molecules, two types of double core holes are expected, the first with two core holes on the same N atom, and the second with one core hole on each N atom. We report the first direct observations of the former type of core hole in a molecule, in good agreement with theory, and provide an experimental upper bound for the relative contribution of the latter type.


Journal of Physics B | 2013

Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser

Christoph Bostedt; John D. Bozek; P. H. Bucksbaum; Ryan Coffee; Jerome Hastings; Zhirong Huang; R W Lee; Sebastian Schorb; J N Corlett; P Denes; P Emma; R W Falcone; R W Schoenlein; Gilles Doumy; E. P. Kanter; Bertold Kraessig; S. H. Southworth; L. Young; L. Fang; M. Hoener; N. Berrah; C. Roedig; L. F. DiMauro

X-ray free-electron lasers (FELs) produce femtosecond x-ray pulses with unprecedented intensities that are uniquely suited for studying many phenomena in atomic, molecular, and optical (AMO) physics. A compilation of the current developments at the Linac Coherent Light Source (LCLS) and future plans for the LCLS-II and Next Generation Light Source (NGLS) are outlined. The AMO instrumentation at LCLS and its performance parameters are summarized. A few selected experiments representing the rapidly developing field of ultra-fast and peak intensity x-ray AMO sciences are discussed. These examples include fundamental aspects of intense x-ray interaction with atoms, nonlinear atomic physics in the x-ray regime, double core-hole spectroscopy, quantum control experiments with FELs and ultra-fast x-ray induced dynamics in clusters. These experiments illustrate the fundamental aspects of the interaction of intense short pulses of x-rays with atoms, molecules and clusters that are probed by electron and ion spectroscopies as well as ultra-fast x-ray scattering.


Science | 2014

Imaging charge transfer in iodomethane upon x-ray photoabsorption

Benjamin Erk; Rebecca Boll; Sebastian Trippel; Denis Anielski; Lutz Foucar; Benedikt Rudek; Sascha W. Epp; Ryan Coffee; Sebastian Carron; Sebastian Schorb; Ken R. Ferguson; Michele Swiggers; John D. Bozek; Marc Simon; T. Marchenko; Jochen Küpper; Ilme Schlichting; Joachim Ullrich; Christoph Bostedt; Daniel Rolles; Artem Rudenko

Tightly tracking charge migration Electron transfer dynamics underlie many chemical and biochemical reactions. Erk et al. examined the charge migration between individual carbon and iodine atoms during dissociation of iodomethane (ICH3) molecules (see the Perspective by Pratt). After initiating scission of the C-I bond with a relatively low-energy laser pulse, they introduced a higher-energy x-ray pulse to instigate ionization and charge migration. Delaying the arrival time of the x-ray pulse effectively varied the separation distance being probed as the fragments steadily drifted apart. The experimental approach should also prove useful for future studies of charge transfer dynamics in different molecular or solid-state systems. Science, this issue p. 288; see also p. 267 A free-electron laser enables precise tracking of electron movement between segments of a dissociating molecule. [Also see Perspective by Pratt] Studies of charge transfer are often hampered by difficulties in determining the charge localization at a given time. Here, we used ultrashort x-ray free-electron laser pulses to image charge rearrangement dynamics within gas-phase iodomethane molecules during dissociation induced by a synchronized near-infrared (NIR) laser pulse. Inner-shell photoionization creates positive charge, which is initially localized on the iodine atom. We map the electron transfer between the methyl and iodine fragments as a function of their interatomic separation set by the NIR–x-ray delay. We observe signatures of electron transfer for distances up to 20 angstroms and show that a realistic estimate of its effective spatial range can be obtained from a classical over-the-barrier model. The presented technique is applicable for spatiotemporal imaging of charge transfer dynamics in a wide range of molecular systems.


Applied Physics Letters | 2012

X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

M. Beye; O. Krupin; G. Hays; A. H. Reid; Daniela Rupp; S. de Jong; S. Lee; W. S. Lee; Yi-De Chuang; Ryan Coffee; James Cryan; J. M. Glownia; A. Föhlisch; M. R. Holmes; Alan Fry; William E. White; Christoph Bostedt; A. O. Scherz; Hermann A. Dürr; W. F. Schlotter

We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 ± 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

Collaboration


Dive into the Ryan Coffee's collaboration.

Top Co-Authors

Avatar

Christoph Bostedt

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John D. Bozek

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Cryan

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Osipov

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. Berrah

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Sebastian Schorb

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nick Hartmann

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alan Fry

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marc Messerschmidt

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge