Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Holton is active.

Publication


Featured researches published by James M. Holton.


Nature | 2011

Femtosecond x-ray protein nanocrystallography

Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Accessing protein conformational ensembles using room-temperature X-ray crystallography

J.S. Fraser; Henry van den Bedem; Avi J. Samelson; P. Therese Lang; James M. Holton; Nathaniel Echols; Tom Alber

Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation.


Nature Structural & Molecular Biology | 2007

Structural basis for aminoglycoside inhibition of bacterial ribosome recycling.

Maria A. Borovinskaya; Raj D. Pai; Wen Zhang; Barbara S. Schuwirth; James M. Holton; Go Hirokawa; Hideko Kaji; Akira Kaji; Jamie H. D. Cate

Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.


The EMBO Journal | 2005

Structural and mechanistic studies of VPS4 proteins

Anna Scott; Hyo Young Chung; Malgorzata Gonciarz-Swiatek; Gina C. Hill; Frank G. Whitby; Jason Gaspar; James M. Holton; Ramya Viswanathan; Sanaz Ghaffarian; Christopher P. Hill; Wesley I. Sundquist

VPS4 ATPases function in multivesicular body formation and in HIV‐1 budding. Here, we report the crystal structure of monomeric apo human VPS4B/SKD1 (hVPS4B), which is composed of five distinct elements: a poorly ordered N‐terminal MIT domain that binds ESCRT‐III substrates, large (mixed α/β) and small (α) AAA ATPase domains that closely resemble analogous domains in the p97 D1 ATPase cassette, a three‐stranded antiparallel β domain inserted within the small ATPase domain, and a novel C‐terminal helix. Apo hVPS4B and yeast Vps4p (yVps4p) proteins dimerized in solution, and assembled into larger complexes (10–12 subunits) upon ATP binding. Human and yeast adaptor proteins (LIP5 and yVta1p, respectively) bound the β domains of the fully assembled hVPS4B and yVps4p proteins. We therefore propose that Vps4 proteins cycle between soluble, inactive low molecular weight complexes and active, membrane‐associated double‐ring structures that bind ATP and coassemble with LIP5/Vta1. Finally, HIV‐1 budding was inhibited by mutations in a loop that projects into the center of the modeled hVPS4B rings, suggesting that hVPS4B may release the assembled ESCRT machinery by pulling ESCRT‐III substrates up into the central pore.


Molecular Cell | 2004

Ubiquitin recognition by the human TSG101 protein

Wesley I. Sundquist; Heidi L. Schubert; Brian N. Kelly; Gina C. Hill; James M. Holton; Christopher P. Hill

The UEV domain of the TSG101 protein functions in both HIV-1 budding and the vacuolar protein sorting (VPS) pathway, where it binds ubiquitylated proteins as they are sorted into vesicles that bud into late endosomal compartments called multivesicular bodies (MVBs). TSG101 UEV-ubiquitin interactions are therefore important for delivery of both substrates and hydrolytic enzymes to lysosomes, which receive proteins via fusion with MVBs. Here, we report the crystal structure of the TSG101 UEV domain in complex with ubiquitin at 2.0 A resolution. TSG101 UEV contacts the Ile44 surface and an adjacent loop of ubiquitin through a highly solvated interface. Mutations that disrupt the interface inhibit MVB sorting, and the structure also explains how the TSG101 UEV can independently bind its ubiquitin and Pro-Thr/Ser-Ala-Pro peptide ligands. Remarkably, comparison with mapping data from other UEV and related E2 proteins indicates that although the different E2/UEV domains share the same structure and have conserved ubiquitin binding activity, they bind through very different interfaces.


Molecular Cell | 2003

The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1.

Helen Walden; Michael S. Podgorski; Danny T. Huang; David W. Miller; Rebecca J. Howard; Daniel L. Minor; James M. Holton; Brenda A. Schulman

E1 enzymes initiate ubiquitin-like protein (ubl) transfer cascades by catalyzing adenylation of the ubls C terminus. An E1s selectivity for its cognate ubl is essential because the E1 subsequently coordinates the ubl with its correct downstream pathway. We report here the structure of the 120 kDa quaternary complex between human APPBP1-UBA3, a heterodimeric E1, its ubl NEDD8, and ATP. The E1 selectively recruits NEDD8 through a bipartite interface, involving a domain common to all ubl activating enzymes including bacterial ancestors, and also eukaryotic E1-specific sequences. By modeling ubiquitin into the NEDD8 binding site and performing mutational analysis, we identify a single conserved arginine in APPBP1-UBA3 that acts as a selectivity gate, preventing misactivation of ubiquitin by NEDD8s E1. NEDD8 residues that interact with E1 correspond to residues in ubiquitin important for binding the proteasome and other ubiquitin-interacting proteins, suggesting that the conjugation and recognition machineries have coevolved for each specific ubl.


Nature | 2007

Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity

Danny T. Huang; Harold W. Hunt; Min Zhuang; Melanie D. Ohi; James M. Holton; Brenda A. Schulman

Ubiquitin-like proteins (UBLs) are conjugated by dynamic E1–E2–E3 enzyme cascades. E1 enzymes activate UBLs by catalysing UBL carboxy-terminal adenylation, forming a covalent E1˜UBL thioester intermediate, and generating a thioester-linked E2˜UBL product, which must be released for subsequent reactions. Here we report the structural analysis of a trapped UBL activation complex for the human NEDD8 pathway, containing NEDD8’s heterodimeric E1 (APPBP1–UBA3), two NEDD8s (one thioester-linked to E1, one noncovalently associated for adenylation), a catalytically inactive E2 (Ubc12), and MgATP. The results suggest that a thioester switch toggles E1–E2 affinities. Two E2 binding sites depend on NEDD8 being thioester-linked to E1. One is unmasked by a striking E1 conformational change. The other comes directly from the thioester-bound NEDD8. After NEDD8 transfer to E2, reversion to an alternate E1 conformation would facilitate release of the E2˜NEDD8 thioester product. Thus, transferring the UBL’s thioester linkage between successive conjugation enzymes can induce conformational changes and alter interaction networks to drive consecutive steps in UBL cascades.


Optics Express | 2012

Time-resolved protein nanocrystallography using an X-ray free-electron laser

Andrew Aquila; Mark S. Hunter; R. Bruce Doak; Richard A. Kirian; Petra Fromme; Thomas A. White; Jakob Andreasson; David Arnlund; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Michael J. Bogan; Christoph Bostedt; Hervé Bottin; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; Daniel P. DePonte; Veit Elser; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Raimund Fromme; Heinz Graafsma; Ingo Grotjohann; Lars Gumprecht; Janos Hajdu

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.


Journal of Synchrotron Radiation | 2009

A beginner’s guide to radiation damage

James M. Holton

Radiation damage considerations affecting data collection by more than a factor of two are summarized and damage avoidance strategies are suggested.


Neuron | 2007

Structural Insight into KCNQ (Kv7) Channel Assembly and Channelopathy

Rebecca J. Howard; Kimberly A. Clark; James M. Holton; Daniel L. Minor

Kv7.x (KCNQ) voltage-gated potassium channels form the cardiac and auditory I(Ks) current and the neuronal M-current. The five Kv7 subtypes have distinct assembly preferences encoded by a C-terminal cytoplasmic assembly domain, the A-domain Tail. Here, we present the high-resolution structure of the Kv7.4 A-domain Tail together with biochemical experiments that show that the domain is a self-assembling, parallel, four-stranded coiled coil. Structural analysis and biochemical studies indicate conservation of the coiled coil in all Kv7 subtypes and that a limited set of interactions encode assembly specificity determinants. Kv7 mutations have prominent roles in arrhythmias, deafness, and epilepsy. The structure together with biochemical data indicate that A-domain Tail arrhythmia mutations cluster on the solvent-accessible surface of the subunit interface at a likely site of action for modulatory proteins. Together, the data provide a framework for understanding Kv7 assembly specificity and the molecular basis of a distinct set of Kv7 channelopathies.

Collaboration


Dive into the James M. Holton's collaboration.

Top Co-Authors

Avatar

Tom Alber

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Aquila

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.S. Fraser

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron S. Brewster

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge