Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Ntambi is active.

Publication


Featured researches published by James M. Ntambi.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity

James M. Ntambi; Makoto Miyazaki; Jonathan P. Stoehr; Hong Lan; Christina Kendziorski; Brian S. Yandell; Yang Song; Paul Cohen; Jeffrey M. Friedman; Alan D. Attie

Stearoyl–CoA desaturase (SCD) is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (C18:1) and palmitoleate (C16:1), which are components of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Several SCD isoforms (SCD1-3) exist in the mouse. Here we show that mice with a targeted disruption of the SCD1 isoform have reduced body adiposity, increased insulin sensitivity, and are resistant to diet-induced weight gain. The protection from obesity involves increased energy expenditure and increased oxygen consumption. Compared with the wild-type mice the SCD1−/− mice have increased levels of plasma ketone bodies but reduced levels of plasma insulin and leptin. In the SCD1−/− mice, the expression of several genes of lipid oxidation are up-regulated, whereas lipid synthesis genes are down-regulated. These observations suggest that a consequence of SCD1 deficiency is an activation of lipid oxidation in addition to reduced triglyceride synthesis and storage.


Progress in Lipid Research | 2004

Regulation of stearoyl-CoA desaturases and role in metabolism

James M. Ntambi; Makoto Miyazaki

Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (18:1) and palmitoleate (16:1). These represent the major monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters and cholesterol esters. The ratio of saturated to monounsaturated fatty acids affects phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, and cancer. For this reason, the expression of SCD is of physiological significance in both normal and disease states. Several SCD gene isoforms (SCD1, SCD2, SCD3) exist in the mouse and one SCD isoform that is highly homologous to the mouse SCD1 is well characterized in human. The physiological role of each SCD isoform and the reason for having three or more SCD gene isoforms in the rodent genome are currently unknown but could be related the substrate specificities of the isomers and their regulation through tissue-specific expression. The recent studies of asebia mouse strains that have a natural mutation in the SCD1 gene and a mouse model with a targeted disruption of the SCD1 gene have provided clues concerning the role that SCD1 and its endogenous products play in the regulation of metabolism.


Journal of Biological Chemistry | 2000

The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1.

Makoto Miyazaki; Young-Cheul Kim; Mark P. Gray-Keller; Alan D. Attie; James M. Ntambi

Stearoyl-CoA desaturase (SCD) is a microsomal enzyme required for the biosynthesis of oleate and palmitoleate, which are the major monounsaturated fatty acids of membrane phospholipids, triglycerides, and cholesterol esters. Two well characterized isoforms of SCD, SCD1 and SCD2, exist in the mouse. Most mouse tissues express SCD1 and 2 with the exception of the liver, which expresses mainly the SCD1 isoform. We found that asebia mice homozygous for a natural mutation of the gene for SCD1 (SCD−/−) are deficient in hepatic cholesterol esters and triglycerides despite the presence of normal activities of acyl-CoA:cholesterol acyltransferase and glycerol phosphate acyltransferase, the enzymes responsible for cholesterol ester and triglyceride synthesis, respectively, in the liver of these mice. Feeding diets supplemented with triolein or tripalmitolein to the SCD−/− mice resulted in an increase in the levels of 16:1 and 18:1 in the liver but failed to restore the 18:1 and 16:1 levels of the cholesterol ester and triglycerides to the levels found in normal mice. The SCD−/− mouse had very low levels of triglycerides in the VLDL and LDL lipoprotein fractions compared with the normal animal. Transient transfection of an SCD1 expression vector into Chinese hamster ovary cells resulted in increased SCD activity and esterification of cholesterol to cholesterol esters. Taken together, our observations demonstrate that the oleoyl-CoA and palmitoleyl-CoA produced by SCD1 are necessary to synthesize enough cholesterol esters and triglycerides in the liver and suggest that regulation of SCD1 activity plays an important role in mechanisms of cellular cholesterol homeostasis.


American Journal of Physiology-endocrinology and Metabolism | 2009

Biochemical and physiological function of stearoyl-CoA desaturase.

Chad M. Paton; James M. Ntambi

A key and highly regulated enzyme that is required for the biosynthesis of monounsaturated fatty acids is stearoyl-CoA desaturase (SCD), which catalyzes the D(9)-cis desaturation of a range of fatty acyl-CoA substrates. The preferred substrates are palmitoyl- and stearoyl-CoA, which are converted into palmitoleoyl- and oleoyl-CoA respectively. Oleate is the most abundant monounsaturated fatty acid in dietary fat and is therefore readily available. Studies of mice that have a naturally occurring mutation in the SCD-1 gene isoform as well as a mouse model with a targeted disruption of the SCD gene (SCD-1(-/-)) have revealed the role of de novo synthesized oleate and thus the physiological importance of SCD-1 expression. SCD-1 deficiency results in reduced body adiposity, increased insulin sensitivity, and resistance to diet-induced obesity. The expression of several genes of lipid oxidation are upregulated, whereas lipid synthesis genes are downregulated. SCD-1 was also found to be a component of the novel metabolic response to the hormone leptin. Therefore, SCD-1 appears to be an important metabolic control point, and inhibition of its expression could be of benefit for the treatment of obesity, diabetes, and other metabolic diseases. In this article, we summarize the recent and timely advances concerning the important role of SCD in the biochemistry and physiology of lipid metabolism.


Progress in Lipid Research | 1995

THE REGULATION OF STEAROYL-COA DESATURASE (SCD)

James M. Ntambi

The stearoyl-CoA desaturase gene family encodes stearoyl-CoA desaturase, the key enzyme involved in the biosynthesis of unsaturated fatty acids, as well as in the regulation of this process. Because of the important role that the SCD gene product plays in fat cell metabolism, future studies on SCD1 gene expression could provide new insights into the role of fatty acids in cellular regulation, metabolism, and gene expression both in normal and disease states. In addition, the SCD gene family can be used as a model to study mechanisms of cellular differentiation, tissue-specific gene expression, and dietary and hormonal regulation of gene expression.


Current Opinion in Lipidology | 2008

Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism.

Matthew T. Flowers; James M. Ntambi

Purpose of review Stearoyl-coenzyme A desaturase 1 is a δ-9 fatty acid desaturase that catalyzes the synthesis of monounsaturated fatty acids and has emerged as a key regulator of metabolism. This review evaluates the latest advances in our understanding of the pivotal role of stearoyl-coenzyme A desaturase 1 in health and disease. Recent findings Scd1-deficient mice have reduced lipid synthesis and enhanced lipid oxidation, thermogenesis and insulin sensitivity in various tissues including liver, muscle and adipose tissue due to transcriptional and posttranscriptional effects. These metabolic changes protect Scd1-deficient mice from a variety of dietary, pharmacological and genetic conditions that promote obesity, insulin resistance and hepatic steatosis. Stearoyl-coenzyme A desaturase 1 is required to guard against dietary unsaturated fat deficiency, leptin deficiency-induced diabetes, and palmitate-induced lipotoxic insults in muscle and pancreatic β-cells. Paradoxical observations of increased muscle stearoyl-coenzyme A desaturase 1 during obesity, starvation and exercise raise questions as to the role of stearoyl-coenzyme A desaturase 1 in this tissue. Mice with a liver-specific loss of stearoyl-coenzyme A desaturase 1, and inhibition of stearoyl-coenzyme A desaturase 1 via antisense or RNA interference, recapitulate only a subset of the phenotypes observed in global Scd1 deficiency, indicating the involvement of multiple tissues. Summary Recent studies in humans and animal models have highlighted that modulation of stearoyl-coenzyme A desaturase 1 activity by dietary intervention or genetic manipulation strongly influences several facets of energy metabolism to affect susceptibility to obesity, insulin resistance, diabetes and hyperlipidemia.


Critical Reviews in Biochemistry and Molecular Biology | 2010

Genetic control of de novo lipogenesis: role in diet-induced obesity.

Maggie S. Strable; James M. Ntambi

De novo lipogenesis (DNL) is a complex yet highly regulated metabolic pathway, and transcription factors such as liver X receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), and carbohydrate response element binding protein (ChREBP) exert significant control over the de novo synthesis of fatty acids. An increase in de novo lipogenesis (DNL) is an important contributor to increased fat mass, while a reduction in lipogenesis may be protective against the development of obesity. In this review, we explore fatty acid synthesis in the context of new insights gleaned from global and tissue-specific gene knockout mouse models of enzymes involved in fatty acid synthesis, namely acetyl-CoA carboxylase, fatty acid synthase, fatty acid elongase 6, and stearoyl-CoA desaturase 1. A disruption in fatty acid synthesis, induced by the deficiency of any one of these enzymes, affects lipid metabolism and in some cases may protect against obesity in a tissue and gene-specific manner, as discussed in detail in this review.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2003

Role of stearoyl-coenzyme A desaturase in lipid metabolism

Makoto Miyazaki; James M. Ntambi

Stearoyl-CoA desaturase (SCD) (EC 1.14.99.5) is an endoplasmic reticulum-bound enzyme that catalyzes the delta9-cis desaturation of saturated fatty acyl-CoAs, the preferred substrates being palmitoyl- and stearoyl-CoA, which are converted to palmitoleoyl- and oleoyl-CoA, respectively. These monounsaturated fatty acids are used as substrates for the synthesis of triglycerides, wax esters, cholesteryl esters and membrane phospholipids. The saturated to monounsaturated fatty acid ratio affects membrane phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, skin disorders and cancer. Thus, the expression of SCD is of physiological importance in normal and disease states. Several mammalian SCD genes have been cloned. A single human, three mouse and two rat are the best characterized SCD genes. The physiological role of each SCD isoform and the reason for having three or more SCD gene isoforms in the rodent genome are currently unknown. A clue as to the physiological role of the SCD, at least SCD1 gene and its endogenous products came from recent studies of asebia mouse strains that have a natural mutation in the SCD1 gene and a mouse model with a targeted disruption of the SCD1 gene. In this review we discuss our current understanding of the physiological role of SCD in lipid synthesis and metabolism.


Biochimica et Biophysica Acta | 2000

Inhibition of hepatic stearoyl-CoA desaturase activity by trans-10, cis-12 conjugated linoleic acid and its derivatives.

Yeonhwa Park; Jayne M. Storkson; James M. Ntambi; Mark E. Cook; Charles J. Sih; Michael W. Pariza

Conjugated linoleic acid (CLA) has been reported to decrease stearoyl-CoA desaturase (SCD) activity by decreasing mRNA expression. This investigation was designed to determine whether structurally related compounds of CLA have a direct inhibitory effect on SCD activity. Trans-10,cis-12 CLA had strong inhibitory activity on SCD while cis-9,trans-11, and trans-9,trans-11 isomers had no effect. Trans-10 octadecenoate was not inhibitory, whereas cis-12 octadecenate was inhibitory, but not as effective as trans-10,cis-12 CLA. Of the oxygenated derivatives, 9-peroxy-cis/trans-10, trans-12 octadecadienoate was a more effective inhibitor than trans-10,cis-12 CLA, whereas 9-hydroxy-trans-10, cis-12 octadecadienoate was less effective. Interestingly, cis-11 octadecadienoate and cis-12 octadecen-10-ynoate were slightly inhibitory. However, trans-9 and trans-11 octadecenoates, and trans-9,cis-12 octadecadienoate were all inactive under test condition, as were linoleate, oleate, and arachidonate. Derivatives of CLA acid modified to alcohol, amide or chloride were all inactive. A cis-12 double bond appears to be a key structural feature for inhibiting SCD activity, especially when coupled with a trans-10 double, whereas a cis-11 double bond is less effective.


Journal of Biological Chemistry | 2007

Stearoyl-CoA Desaturase-1 Mediates the Pro-lipogenic Effects of Dietary Saturated Fat

Harini Sampath; Makoto Miyazaki; Agnieszka Dobrzyn; James M. Ntambi

Dietary saturated fats have often been implicated in the promotion of obesity and related disorders. It has been shown recently that saturated fats act through the transcription factor SREBP-1c (sterol regulatory element-binding protein-1c) and its requisite coactivator, peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β), to exert their pro-lipogenic effects. We show here that a diet high in the saturated fat stearate induces lipogenic genes in wild-type mice, with the induction of the Scd1 (stearoyl-CoA desaturase-1) gene preceding that of other lipogenic genes. However, in Scd1-/- mice, stearate does not induce lipogenesis, and Srebp-1c and Pgc-1β levels are markedly reduced. Instead, genes of fatty acid oxidation such as Cpt-1 (carnitine palmitoyltransferase-1) as well as Pgc-1α are induced. Mitochondrial fatty acid oxidation is increased, and white adipose tissue and hepatic glycogen stores are depleted in stearate-fed Scd1-/- mice. Furthermore, AMP-activated protein kinase is also induced by stearate feeding in Scd1-/- mice. These results indicate that the desaturation of saturated fats such as stearate by SCD is an essential step mediating their induction of lipogenesis. In the absence of SCD1, stearate promotes oxidation, leading to protection from saturated fat-induced obesity. SCD1 thus serves as a molecular switch in the promotion or prevention of lipid-induced disorders brought on by consumption of excess saturated fat.

Collaboration


Dive into the James M. Ntambi's collaboration.

Top Co-Authors

Avatar

Makoto Miyazaki

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Dobrzyn

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Matthew T. Flowers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Makoto Miyazaki

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Harini Sampath

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kiki Chu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xueqing Liu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Pawel Dobrzyn

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Michael W. Pariza

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Alan D. Attie

Wisconsin Alumni Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge