Matthew T. Flowers
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matthew T. Flowers.
Current Opinion in Lipidology | 2008
Matthew T. Flowers; James M. Ntambi
Purpose of review Stearoyl-coenzyme A desaturase 1 is a δ-9 fatty acid desaturase that catalyzes the synthesis of monounsaturated fatty acids and has emerged as a key regulator of metabolism. This review evaluates the latest advances in our understanding of the pivotal role of stearoyl-coenzyme A desaturase 1 in health and disease. Recent findings Scd1-deficient mice have reduced lipid synthesis and enhanced lipid oxidation, thermogenesis and insulin sensitivity in various tissues including liver, muscle and adipose tissue due to transcriptional and posttranscriptional effects. These metabolic changes protect Scd1-deficient mice from a variety of dietary, pharmacological and genetic conditions that promote obesity, insulin resistance and hepatic steatosis. Stearoyl-coenzyme A desaturase 1 is required to guard against dietary unsaturated fat deficiency, leptin deficiency-induced diabetes, and palmitate-induced lipotoxic insults in muscle and pancreatic β-cells. Paradoxical observations of increased muscle stearoyl-coenzyme A desaturase 1 during obesity, starvation and exercise raise questions as to the role of stearoyl-coenzyme A desaturase 1 in this tissue. Mice with a liver-specific loss of stearoyl-coenzyme A desaturase 1, and inhibition of stearoyl-coenzyme A desaturase 1 via antisense or RNA interference, recapitulate only a subset of the phenotypes observed in global Scd1 deficiency, indicating the involvement of multiple tissues. Summary Recent studies in humans and animal models have highlighted that modulation of stearoyl-coenzyme A desaturase 1 activity by dietary intervention or genetic manipulation strongly influences several facets of energy metabolism to affect susceptibility to obesity, insulin resistance, diabetes and hyperlipidemia.
Nature Genetics | 2006
Susanne M. Clee; Brian S. Yandell; Kathryn M Schueler; Mary E. Rabaglia; Oliver C. Richards; Summer M. Raines; Edward A Kabara; Daniel M Klass; Eric T-K Mui; Donald S. Stapleton; Mark P. Gray-Keller; Matthew B Young; Jonathan P. Stoehr; Hong Lan; Igor V. Boronenkov; Philipp W. Raess; Matthew T. Flowers; Alan D. Attie
We previously mapped the type 2 diabetes mellitus-2 locus (T2dm2), which affects fasting insulin levels, to distal chromosome 19 in a leptin-deficient obese F2 intercross derived from C57BL/6 (B6) and BTBR T+ tf/J (BTBR) mice. Introgression of a 7-Mb segment of the B6 chromosome 19 into the BTBR background (strain 1339A) replicated the reduced insulin linked to T2dm2. The 1339A mice have markedly impaired insulin secretion in vivo and disrupted islet morphology. We used subcongenic strains derived from 1339A to localize the T2dm2 quantitative trait locus (QTL) to a 242-kb segment comprising the promoter, first exon and most of the first intron of the Sorcs1 gene. This was the only gene in the 1339A strain for which we detected amino acid substitutions and expression level differences between mice carrying B6 and BTBR alleles of this insert, thereby identifying variation within the Sorcs1 gene as underlying the phenotype associated with the T2dm2 locus. SorCS1 binds platelet-derived growth factor, a growth factor crucial for pericyte recruitment to the microvasculature, and may thus have a role in expanding or maintaining the islet vasculature. Our identification of the Sorcs1 gene provides insight into the pathway underlying the pathophysiology of obesity-induced type 2 diabetes mellitus.
Diabetes | 2007
Jessica B. Flowers; Mary E. Rabaglia; Kathryn L. Schueler; Matthew T. Flowers; Hong Lan; Mark P. Keller; James M. Ntambi; Alan D. Attie
The lipogenic gene stearoyl-CoA desaturase (SCD)1 appears to be a promising new target for obesity-related diabetes, as mice deficient in this enzyme are resistant to diet- and leptin deficiency–induced obesity. The BTBR mouse strain replicates many features of insulin resistance found in humans with excess visceral adiposity. Using the hyperinsulinemic-euglycemic clamp technique, we determined that insulin sensitivity was improved in heart, soleus muscle, adipose tissue, and liver of BTBR SCD1-deficient mice. We next determined whether SCD1 deficiency could prevent diabetes in leptin-deficient BTBR mice. Loss of SCD1 in leptinob/ob mice unexpectedly accelerated the progression to severe diabetes; 6-week fasting glucose increased ∼70%. In response to a glucose challenge, Scd1−/− leptinob/ob mice had insufficient insulin secretion, resulting in glucose intolerance. A morphologically distinct class of islets isolated from the Scd1−/− leptinob/ob mice had reduced insulin content and increased triglycerides, free fatty acids, esterified cholesterol, and free cholesterol and also a much higher content of saturated fatty acids. We believe the accumulation of lipid is due to an upregulation of lipoprotein lipase (20-fold) and Cd36 (167-fold) and downregulation of lipid oxidation genes in this class of islets. Therefore, although loss of Scd1 has beneficial effects on adiposity, this benefit may come at the expense of β-cells, resulting in an increased risk of diabetes.
Biochimica et Biophysica Acta | 2009
Matthew T. Flowers; James M. Ntambi
Obesity is currently a worldwide epidemic and public health burden that increases the risk for developing insulin resistance and several chronic diseases such as diabetes, cardiovascular diseases and non-alcoholic fatty liver disease. The multifactorial causes of obesity include several genetic, dietary and lifestyle variables that together result in an imbalance between energy intake and energy expenditure. Dietary approaches to limit fat intake are commonly prescribed to achieve the hypocaloric conditions necessary for weight loss. But dietary fat restriction is often accompanied by increased carbohydrate intake, which can dramatically increase endogenous fatty acid synthesis depending upon carbohydrate composition. Since both dietary and endogenously synthesized fatty acids contribute to the whole-body fatty acid pool, obesity can therefore result from excessive fat or carbohydrate consumption. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a delta-9 fatty acid desaturase that converts saturated fatty acids into monounsaturated fatty acids (MUFA) and this activity is elevated by dietary carbohydrate. Mice lacking Scd1 are protected from obesity and insulin resistance and are characterized by decreased fatty acid synthesis and increased fatty acid oxidation. In this review, we address the association of high-carbohydrate diets with increased SCD activity and summarize the current literature on the subject of SCD1 and body weight regulation.
Journal of Biological Chemistry | 2009
Harini Sampath; Matthew T. Flowers; Xueqing Liu; Chad M. Paton; Ruth Sullivan; Kiki Chu; Minghui Zhao; James M. Ntambi
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids and is an important regulator of whole body energy homeostasis. Severe cutaneous changes in mice globally deficient in SCD1 also indicate a role for SCD1 in maintaining skin lipids. We have generated mice with a skin-specific deletion of SCD1 (SKO) and report here that SKO mice display marked sebaceous gland hypoplasia and depletion of sebaceous lipids. In addition, SKO mice have significantly increased energy expenditure and are protected from high fat diet-induced obesity, thereby recapitulating the hypermetabolic phenotype of global SCD1 deficiency. Genes of fat oxidation, lipolysis, and thermogenesis, including uncoupling proteins and peroxisome proliferator-activated receptor-γ co-activator-1α, are up-regulated in peripheral tissues of SKO mice. However, unlike mice globally deficient in SCD1, SKO mice have an intact hepatic lipogenic response to acute high carbohydrate feeding. Despite increased basal thermogenesis, SKO mice display severe cold intolerance because of rapid depletion of fuel substrates, including hepatic glycogen, to maintain core body temperature. These data collectively indicate that SKO mice have increased cold perception because of loss of insulating factors in the skin. This results in up-regulation of thermogenic processes for temperature maintenance at the expense of fuel economy, illustrating cross-talk between the skin and peripheral tissues in maintaining energy homeostasis.
Physiological Genomics | 2008
Matthew T. Flowers; Mark P. Keller; YounJeong Choi; Hong Lan; Christina Kendziorski; James M. Ntambi; Alan D. Attie
We previously reported that mice deficient in stearoyl-CoA desaturase-1 (Scd1) and maintained on a very low-fat (VLF) diet for 10 days developed severe loss of body weight, hypoglycemia, hypercholesterolemia, and many cholestasis-like phenotypes. To better understand the metabolic changes associated with these phenotypes, we performed microarray analysis of hepatic gene expression in chow- and VLF-fed female Scd1+/+ and Scd1-/- mice. We identified an extraordinary number of differentially expressed genes (>4,000 probe sets) in the VLF Scd1-/- relative to both VLF Scd1+/+ and chow Scd1-/- mice. Transcript levels were reduced for genes involved in detoxification and several facets of fatty acid metabolism including biosynthesis, elongation, desaturation, oxidation, transport, and ketogenesis. This pattern is attributable to the decreased mRNA abundance of several genes encoding key transcription factors, including LXRalpha, RXRalpha, FXR, PPARalpha, PGC-1beta, SREBP1c, ChREBP, CAR, DBP, TEF, and HLF. A robust induction of endoplasmic reticulum (ER) stress is indicated by enhanced splicing of XBP1, increased expression of the stress-induced transcription factors CHOP and ATF3, and elevated expression of several genes involved in the integrated stress and unfolded protein response pathways. The gene expression profile is also consistent with induction of an acute inflammatory response and macrophage recruitment. These results highlight the importance of monounsaturated fatty acid synthesis for maintaining metabolic homeostasis in the absence of sufficient dietary unsaturated fat and point to a novel cellular nutrient-sensing mechanism linking fatty acid availability and/or composition to the ER stress response.
Biochemical and Biophysical Research Communications | 2009
Makoto Miyazaki; Harini Sampath; Xueqing Liu; Matthew T. Flowers; Kiki Chu; Agnieszka Dobrzyn; James M. Ntambi
Obesity and adiposity greatly increase the risk for secondary conditions such as insulin resistance. Mice deficient in the enzyme stearoyl-CoA desaturase-1 (SCD1) are lean and protected from diet-induced obesity and insulin resistance. In order to determine the effect of SCD1 deficiency on various mouse models of obesity, we introduced a global deletion of the Scd1 gene into leptin-deficient ob/ob mice, leptin-resistant Agouti (A(y)/a) mice, and high-fat diet-fed obese (DIO) mice. SCD1 deficiency lowered body weight, adiposity, hepatic lipid accumulation, and hepatic lipogenic gene expression in all three mouse models. However, glucose tolerance, insulin, and leptin sensitivity were improved by SCD1 deficiency only in A(y)/a and DIO mice, but not ob/ob mice. These data uncouple the effects of SCD1 deficiency on weight loss from those on insulin sensitivity and suggest a beneficial effect of SCD1 inhibition on insulin sensitivity in obese mice that express a functional leptin gene.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Xueqing Liu; Makoto Miyazaki; Matthew T. Flowers; Harini Sampath; Minghui Zhao; Kiki Chu; Chad M. Paton; Diane Seohee Joo; James M. Ntambi
Background and Purpose—Adipose inflammation is crucial to the pathogenesis of metabolic disorders. This study aimed at identify the effects of stearoyl-CoA desaturase-1 (SCD1) on the inflammatory response of a paracrine network involving adipocytes, macrophages, and endothelial cells. Methods and Results—Loss of SCD1 in both genetic (Agouti) and diet-induced obesity (high-fat diet) mouse models prevented inflammation in white adipose tissue and improved its basal insulin signaling. In SCD1-deficient mice, white adipose tissue exhibited lower inflammation, with a reduced response to lipopolysaccharide in isolated adipocytes, but not in peritoneal macrophages. Mimicking the in vivo paracrine regulation of white adipose tissue inflammation, SCD1-deficient adipocyte-conditioned medium attenuated the induction of tumor necrosis factor (TNF) &agr;/interleukin 1&bgr; gene expression in RAW264.7 macrophages and reduced the adhesion response in endothelial cells. We further demonstrated that the adipocyte-derived oleate (18:1n9), but not palmitoleate (16:1n7), mediated the inflammation in macrophages and adhesion responses in endothelial cells. Conclusions—Loss of SCD1 attenuates adipocyte inflammation and its paracrine regulation of inflammation in macrophages and endothelial cells. The reduced oleate level is linked to the inflammation-modulating effects of SCD1 deficiency.
Journal of Lipid Research | 2006
Matthew T. Flowers; Albert K. Groen; Angie T. Oler; Mark P. Keller; YounJeong Choi; Kathryn L. Schueler; Oliver C. Richards; Hong Lan; Makoto Miyazaki; Folkert Kuipers; Christina Kendziorski; James M. Ntambi; Alan D. Attie
Stearoyl-coenzyme A desaturase 1-deficient (SCD1−/−) mice have impaired MUFA synthesis. When maintained on a very low-fat (VLF) diet, SCD1−/− mice developed severe hypercholesterolemia, characterized by an increase in apolipoprotein B (apoB)-containing lipoproteins and the appearance of lipoprotein X. The rate of LDL clearance was decreased in VLF SCD1−/− mice relative to VLF SCD1+/+ mice, indicating that reduced apoB-containing lipoprotein clearance contributed to the hypercholesterolemia. Additionally, HDL-cholesterol was dramatically reduced in these mice. The presence of increased plasma bile acids, bilirubin, and aminotransferases in the VLF SCD1−/− mice is indicative of cholestasis. Supplementation of the VLF diet with MUFA- and PUFA-rich canola oil, but not saturated fat-rich hydrogenated coconut oil, prevented these plasma phenotypes. However, dietary oleate was not as effective as canola oil in reducing LDL-cholesterol, signifying a role for dietary PUFA deficiency in the development of this phenotype. These results indicate that the lack of SCD1 results in an increased requirement for dietary unsaturated fat to compensate for impaired MUFA synthesis and to prevent hypercholesterolemia and hepatic dysfunction. Therefore, endogenous MUFA synthesis is essential during dietary unsaturated fat insufficiency and influences the dietary requirement of PUFA.
Journal of Clinical Investigation | 2006
Matthew T. Flowers; Makoto Miyazaki; Xueqing Liu; James M. Ntambi
Previous studies using stearoyl-CoA desaturase-1-deficient (SCD1-deficient) mice have shown that this enzyme plays an important role in many diseases of altered cellular metabolism including obesity, insulin resistance, and dyslipidemia. Although SCD1 activity is highest in lipogenic tissues such as the liver and adipose tissue, it is also present at lower levels in most tissues. To better understand the role of SCD1 in liver metabolism it is necessary to explore SCD1 deficiency in a more focused, tissue-specific manner. This commentary focuses on 2 recent studies published in the JCI that address this question using antisense oligonucleotide inhibition of SCD1. First, Jiang et al. have previously reported that long-term inhibition of SCD1 prevents the development of high-fat diet-induced obesity and hepatic steatosis. Second, Gutiérrez-Juárez et al. show in this issue that short-term inhibition of hepatic SCD1 is sufficient to prevent diet-induced hepatic insulin resistance, signifying an important role of hepatic SCD1 in liver insulin sensitivity (see related article beginning on page 1686).