Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Slauch is active.

Publication


Featured researches published by James M. Slauch.


Gene | 2002

Construction of targeted single copy lac fusions using λ Red and FLP-mediated site-specific recombination in bacteria

Craig D. Ellermeier; Anuradha Janakiraman; James M. Slauch

A simple method for the construction of targeted transcriptional and translational fusions to the lac operon using FLP mediated site-specific recombination is described. Conditional plasmids containing promoterless lacZY genes and the FLP recognition target (FRT) site in both orientations were constructed for generating transcriptional fusions. Similarly, a plasmid used to create translational fusions was constructed in which the endogenous translational start of lacZ has been removed. These plasmids can be transformed into strains containing a single FRT site, which was previously integrated downstream of the promoter of interest using the lambda Red recombination method. The FLP protein produced from a helper plasmid that contains a conditional origin of replication promotes site-specific recombination between the FRT sites, resulting in an integrated lac fusion to the gene of interest. Transcriptional fusions to the Salmonella typhimurium genes sodCII and sitA were constructed using this method and shown to respond appropriately to mutations in the respective regulatory genes, rpoS and fur. Translational fusions were also constructed using this method. In this case, expression of beta-galactosidase was dependent on translation of the target protein. Given that the FLP recombinase does not require host factors for function and that this method requires no molecular cloning, this method should be applicable for the analysis of gene expression in a variety of organisms.


Molecular Microbiology | 2000

The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium

Anuradha Janakiraman; James M. Slauch

Salmonella typhimurium is an invasive pathogen that causes diseases ranging from mild gastroenteritis to enteric fever. During the infection process, S. typhimurium induces a number of virulence genes required to circumvent host defences and/or acquire nutrients in the host. We have used the in vivo expression technology (IVET) system to select for S. typhimurium genes that are induced after invasion of a murine cultured cell line. We have characterized a putative iron transporter in Salmonella pathogenicity island 1, termed sitABCD. The sitABCD operon is induced under iron‐deficient conditions in vitro and is repressed by Fur. This locus is induced in the animal specifically after invasion of the intestinal epithelium. We show that a sit null mutant is significantly attenuated in BALB/c mice, suggesting that SitABCD plays an important role in iron acquisition in the animal.


Molecular Microbiology | 2005

HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium.

Craig D. Ellermeier; Jeremy R. Ellermeier; James M. Slauch

Salmonella enterica serovar Typhimurium invades intestinal epithelial cells using a type three secretion system (TTSS) encoded on Salmonella Pathogenicity Island 1 (SPI1). The SPI1 TTSS injects effector proteins into the cytosol of host cells where they promote actin rearrangement and engulfment of the bacteria. We previously identified RtsA, an AraC‐like protein similar to the known HilC and HilD regulatory proteins. Like HilC and HilD, RtsA activates expression of SPI1 genes by binding upstream of the master regulatory gene hilA to induce its expression. HilA activates the SPI1 TTSS structural genes. Here we present evidence that hilA expression, and hence the SPI1 TTSS, is controlled by a feedforward regulatory loop. We demonstrate that HilC, HilD and RtsA are each capable of independently inducing expression of the hilC, hilD and rtsA genes, and that each can independently activate hilA. Using competition assays in vivo, we show that each of the hilA regulators contribute to SPI1 induction in the intestine. Of the three, HilD has a predominant role, but apparently does not act alone either in vivo or in vitro to sufficiently activate SPI1. The two‐component regulatory systems, SirA/BarA and OmpR/EnvZ, function through HilD, thus inducing hilC, rtsA and hilA. However, the two‐component systems are not responsible for environmental regulation of SPI1. Rather, we show that ‘SPI1 inducing conditions’ cause independent activation of the rtsA, hilC and hilD genes in the absence of known regulators. Our model of SPI1 regulation provides a framework for future studies aimed at understanding this complicated regulatory network.


Molecular Microbiology | 2011

How does the oxidative burst of macrophages kill bacteria? Still an open question.

James M. Slauch

Reactive oxygen species (ROS) are critical components of the antimicrobial repertoire of macrophages, yet the mechanisms by which ROS damage bacteria in the phagosome are unclear. The NADH‐dependent phagocytic oxidase produces superoxide, which dismutes to form H2O2. The Barras and Méresse labs use a GFP fusion to an OxyR regulated gene to show that phagocyte‐derived H2O2 is gaining access to the Salmonella cytoplasm. However, they have also shown previously that Salmonella has redundant systems to detoxify this H2O2. Although Salmonella propagate in a unique vacuole, their data suggest that ROS are not diminished in this modified phagosome. These recent results are put into the context of our overall understanding of potential oxidative bacterial damage occurring in macrophages.


Journal of Bacteriology | 2003

RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium.

Craig D. Ellermeier; James M. Slauch

Salmonella enterica serovar Typhimurium encounters numerous host environments and defense mechanisms during the infection process. The bacterium responds by tightly regulating the expression of virulence genes. We identified two regulatory proteins, termed RtsA and RtsB, which are encoded in an operon located on an island integrated at tRNA(PheU) in S. enterica serovar Typhimurium. RtsA belongs to the AraC/XylS family of regulators, and RtsB is a helix-turn-helix DNA binding protein. In a random screen, we identified five RtsA-regulated fusions, all belonging to the Salmonella pathogenicity island 1 (SPI1) regulon, which encodes a type III secretion system (TTSS) required for invasion of epithelial cells. We show that RtsA increases expression of the invasion genes by inducing hilA expression. RtsA also induces expression of hilD, hilC, and the invF operon. However, induction of hilA is independent of HilC and HilD and is mediated by direct binding of RtsA to the hilA promoter. The phenotype of an rtsA null mutation is similar to the phenotype of a hilC mutation, both of which decrease expression of SPI1 genes approximately twofold. We also show that RtsA can induce expression of a SPI1 TTSS effector, slrP, independent of any SPI1 regulatory protein. RtsB represses expression of the flagellar genes by binding to the flhDC promoter region. Repression of the positive activators flhDC decreases expression of the entire flagellar regulon. We propose that RtsA and RtsB coordinate induction of invasion and repression of motility in the small intestine.


Journal of Bacteriology | 2008

Fur Regulates Expression of the Salmonella Pathogenicity Island 1 Type III Secretion System through HilD

Jeremy R. Ellermeier; James M. Slauch

The invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is mediated by a type III secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). Expression of the SPI1 T3SS is tightly regulated by the combined action of HilC, HilD, and RtsA, three AraC family members that can independently activate hilA, which encodes the direct regulator of the SPI1 structural genes. Expression of hilC, hilD, and rtsA is controlled by a number of regulators that respond to a variety of environmental signals. In this work, we show that one such signal is iron mediated by Fur (ferric uptake regulator). Fur activates hilA transcription in a HilD-dependent manner. Fur regulation of HilD does not appear to be simply at the transcriptional or translational level but rather requires the presence of the HilD protein. Fur activation of SPI1 is not mediated through the Fur-regulated small RNAs RfrA and RfrB, which are the Salmonella ortholog and paralog of RyhB that control expression of sodB. Fur regulation of HilD is also not mediated through the known SPI1 repressor HilE or the CsrABC system. Although understanding the direct mechanism of Fur action on HilD requires further analysis, this work is an important step toward elucidating how various global regulatory systems control SPI1.


Journal of Bacteriology | 2000

Tissue-Specific Gene Expression Identifies a Gene in the Lysogenic Phage Gifsy-1 That Affects Salmonella enterica Serovar Typhimurium Survival in Peyer's Patches

Theresa L. Stanley; Craig D. Ellermeier; James M. Slauch

In vivo expression technology was used to identify Salmonella enterica serovar Typhimurium genes that are transcriptionally induced when the bacteria colonize the small intestines of mice. These genes were subsequently screened for those that are transcriptionally inactive during the systemic stages of disease. This procedure identified gipA, a gene that is specifically induced in the small intestine of the animal. The gipA gene is carried on the lambdoid phage Gifsy-1. Consistent with the expression profile, the sole defect conferred by a gipA null mutation is in growth or survival in a Peyers patch. The gipA strain is wild type in its ability to initially colonize the small intestine and invade the intestinal epithelium. The mutant also survives and propagates at wild-type levels during the systemic stages of disease. The gipA open reading frame is homologous to a family of putative insertion sequence elements, although our evidence shows that transposition is not required for gipA function in the Peyers patch. These results suggest that the bacteria sense and respond to the particular environment of the Peyers patch, a critical site for the replication of Salmonella serovar Typhimurium.


Journal of Clinical Microbiology | 2009

Heterogeneity of Vaginal Microbial Communities within Individuals

Tae Kyung Kim; Susan M. Thomas; Mengfei Ho; Shobha Sharma; Claudia I. Reich; Jeremy A. Frank; Kathleen M. Yeater; Diana R. Biggs; Noriko Nakamura; Rebecca M. Stumpf; Steven R. Leigh; Richard I. Tapping; Steven R. Blanke; James M. Slauch; H. Rex Gaskins; Jon S. Weisbaum; Gary J. Olsen; Lois L. Hoyer; Brenda A. Wilson

ABSTRACT Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health.


Methods in Enzymology | 1994

In vivo expression technology for selection of bacterial genes specifically induced in host tissues

James M. Slauch; Michael J. Mahan; John J. Mekalanos

We have developed a genetic system, termed IVET (in vivo expression technology), designed to identify bacterial genes that are induced when a pathogen infects its host. A subset of these induced genes should include those that encode virulence factors, products specifically required for the infection process. The system is based on complementation of an attenuating auxotrophic mutation by gene fusion, and it is designed to be of use in a wide variety of pathogenic organisms. In Salmonella typhimurium, we have successfully used the system to identify a number of genes that are induced in BALB/c mice, and that, when mutated, confer a virulence defect. The IVET system has several applications in the area of vaccine and antimicrobial drug development. The technique was designed for the identification of virulence factors and thus may lead to the discovery of new antigens useful as vaccine components. The IVET system facilitates the isolation of mutations in genes involved in virulence and, therefore, should aid in the construction of live attenuated vaccines. In addition, the identification of promoters that are optimally expressed in animal tissues provides a means of establishing in vivo regulated expression of heterologous antigens in live vaccines, an area that has been previously problematic. Finally, we expect that our methodology will be used to uncover many biosynthetic, catabolic, and regulatory genes that are required for growth of microbes in animal tissues. The elucidation of these gene products should provide new targets for antimicrobial drug development.


Journal of Molecular Biology | 1989

Genetic analysis of the switch that controls porin gene expression in Escherichia coli K-12

James M. Slauch; Thomas J. Silhavy

The two-component regulatory system, OmpR and EnvZ, in Escherichia coli controls the differential expression of ompF and ompC in response to medium osmolarity. Previous studies suggest that EnvZ functions as a membrane sensor relaying information to the DNA-binding protein, OmpR, which in turn activates expression of the appropriate promoter. A strategy has been devised to isolate and characterize a collection of missense mutations in ompR that alter, but do not abolish protein function. Mutants were isolated using strains that contain the ompR and envZ genes in separate chromosomal locations yet maintain the production of both regulatory proteins at physiological levels. Such an arrangement facilitates ompR diploid analysis and tests of epistasis with known envZ mutations. The data obtained indicate that OmpR works in both a positive and negative fashion to control the transcription of ompF and this result forms the basis of a model for porin regulation that explains the switch from OmpF to OmpC production in response to increasing medium osmolarity.

Collaboration


Dive into the James M. Slauch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avital Tidhar

Israel Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Supreet Saini

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge