Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James M. Stafford is active.

Publication


Featured researches published by James M. Stafford.


Biological Psychiatry | 2012

Increasing Histone Acetylation in the Hippocampus-Infralimbic Network Enhances Fear Extinction

James M. Stafford; Jonathan D. Raybuck; Andrey E. Ryabinin; K. Matthew Lattal

BACKGROUND A key finding from recent studies of epigenetic mechanisms of memory is that increasing histone acetylation after a learning experience enhances memory consolidation. This has been demonstrated in several preparations, but little is known about whether excitatory and inhibitory memories are equally sensitive to drugs that promote histone acetylation and how transcriptional changes in the hippocampal-medial prefrontal cortex network contribute to these drug effects. METHODS We compare the long-term behavioral consequences of systemic, intrahippocampal and intra-medial prefrontal cortex administration of the histone deacetylase inhibitor sodium butyrate (NaB) after contextual fear conditioning and extinction 1 and/or 14 days later in male c57BL/6J mice (n = 302). Levels of histone acetylation and expression of the product of the immediate-early gene c-Fos were assessed by immunohistochemistry following infusion of NaB into the hippocampus (n = 26). RESULTS Across a variety of conditions, the effects of NaB on extinction were larger and more persistent compared to the effects on initial memory formation. NaB administered following weak extinction induced behavioral extinction, infralimbic histone acetylation and c-Fos expression consistent with strong extinction. No similar effect was seen in the prelimbic cortex. The involvement of the infralimbic cortex was confirmed as infusions of NaB into the infralimbic, but not prelimbic cortex, induced extinction enhancements. CONCLUSIONS These studies show that the memory modulating ability of drugs that enhance acetylation is sensitive to a variety of behavioral and molecular conditions. We further identify transcriptional changes in the hippocampal-infralimbic circuit associated with extinction enhancements induced by the histone deacetylase inhibitor NaB.


Nature | 2014

An AUTS2-Polycomb complex activates gene expression in the CNS

Zhonghua Gao; Pedro Lee; James M. Stafford; Melanie von Schimmelmann; Anne Schaefer; Danny Reinberg

Naturally occurring variations of Polycomb repressive complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, autism susceptibility candidate 2 (AUTS2). Although AUTS2 is often disrupted in patients with neuronal disorders, the mechanism underlying the pathogenesis is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1–AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1–AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1–AUTS2 neutralizes PRC1 repressive activity, whereas AUTS2-mediated recruitment of P300 leads to gene activation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.Summary Naturally occurring variations of Polycomb Repressive Complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, Autism Susceptibility Candidate 2 (AUTS2). While AUTS2 is often disrupted in patients with neuronal disorders, the underlying mechanism is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrated that the CK2 component of PRC1-AUTS2 thwarts PRC1 repressive activity while AUTS2-mediated recruitment of P300 leads to gene activation. ChIP-seq demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Large-scale topology and the default mode network in the mouse connectome

James M. Stafford; Benjamin R. Jarrett; Oscar Miranda-Dominguez; Brian D. Mills; Nicholas Cain; Stefan Mihalas; Garet P. Lahvis; K. Matthew Lattal; Suzanne H. Mitchell; Stephen V. David; John D. Fryer; Joel T. Nigg; Damien A. Fair

Significance Noninvasive brain imaging holds great promise for expanding our capabilities of treating human neurologic and psychiatric disorders. However, key limitations exist in human-only studies, and the ability to use animal models would greatly advance our understanding of human brain function. Mice offer sophisticated genetic and molecular methodology, but correlating these data to functional brain imaging in the mouse brain has remained a major hurdle. This study is the first, to our knowledge, to use whole-brain functional imaging to show large-scale functional architecture with structural correlates in the mouse. Perhaps more important is the finding of conservation in brain topology and default network among rodents and primates, thereby clearing the way for a bridge measurement between human and mouse models. Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans.


Trends in Cell Biology | 2014

Epigenetic inheritance: histone bookmarks across generations

Eric I. Campos; James M. Stafford; Danny Reinberg

Multiple circuitries ensure that cells respond correctly to the environmental cues within defined cellular programs. There is increasing evidence suggesting that cellular memory for these adaptive processes can be passed on through cell divisions and generations. However, the mechanisms by which this epigenetic information is transferred remain elusive, largely because it requires that such memory survive through gross chromatin remodeling events during DNA replication, mitosis, meiosis, and developmental reprogramming. Elucidating the processes by which epigenetic information survives and is transmitted is a central challenge in biology. In this review, we consider recent advances in understanding mechanisms of epigenetic inheritance with a focus on histone segregation at the replication fork, and how an epigenetic memory may get passed through the paternal lineage.


Neuro-oncology | 2016

Pediatric high-grade glioma: biologically and clinically in need of new thinking

Chris Jones; Matthias A. Karajannis; David T. W. Jones; Mark W. Kieran; Michelle Monje; Suzanne J. Baker; Oren J. Becher; Yoon-Jae Cho; Nalin Gupta; Cynthia Hawkins; Darren Hargrave; Daphne A. Haas-Kogan; Nada Jabado; Xiao-Nan Li; Sabine Mueller; Theo Nicolaides; Roger J. Packer; Anders Persson; Joanna J. Phillips; Erin F. Simonds; James M. Stafford; Yujie Tang; Stefan M. Pfister; William A. Weiss

Abstract High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analyses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, developmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative clinical management.


Learning & Memory | 2013

Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits

James M. Stafford; Dee Anna K Maughan; Elena C. Ilioi; K. Matthew Lattal

An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This extinction process results in the suppression of fear responses, but is generally thought to leave the original fearful memory intact. Here, we investigate the effects of extinction during periods of memory lability on behavioral responses and on expression of the immediate-early gene c-Fos within fear conditioning and extinction circuits. Our results show that long-term extinction is impaired when it occurs during time periods during which the memory should be most vulnerable to disruption (soon after conditioning or retrieval). These behavioral effects are correlated with hyperactivation of medial prefrontal cortex and amygdala subregions associated with fear expression rather than fear extinction. These findings demonstrate that behavioral experiences during periods of heightened fear prevent extinction and prolong the conditioned fear response.


Learning & Memory | 2009

Direct comparisons of the size and persistence of anisomycin-induced consolidation and reconsolidation deficits

James M. Stafford; K. Matthew Lattal

An issue of increasing theoretical interest in the study of learning is to compare the processes that follow an initial learning experience (such as learning an association between a context and a shock; memory consolidation processes) with those that follow retrieval of that learning experience (such as exposure to the context in the absence of shock; memory reconsolidation and extinction processes). Much of what is known about these processes comes from separate experiments examining one process or the other; there have been few attempts to compare these processes directly in a single experiment. A challenge in between-experiment comparisons of consolidation and reconsolidation deficits is that they frequently involve comparisons between groups that are not matched on factors that may influence the size and persistence of these deficits (e.g., prior learning experience, memory expression prior to deficit). The following experiments examined the size and persistence of these deficits after matching both the amount of experience with a context and the levels of performance in that context prior to delivery of the protein synthesis inhibitor anisomycin. We found that systemic or intrahippocampal administration of anisomycin caused a deficit in groups receiving context conditioning (consolidation groups) or reactivation (reconsolidation groups) immediately prior to the injections. With systemic injections, the deficit was larger and more persistent in consolidation groups; with intrahippocampal injections, the initial deficit was statistically identical, yet was more persistent in the consolidation group. These experiments showed that when experiences and performance are matched prior to anisomycin injections, consolidation deficits are generally larger and more persistent compared to reconsolidation deficits.


Neurobiology of Learning and Memory | 2011

Is an epigenetic switch the key to persistent extinction

James M. Stafford; K. Matthew Lattal

Many studies of learning have demonstrated that conditioned behavior can be eliminated when previously established relations between stimuli are severed. This extinction process has been extremely important for the development of learning theories and, more recently, for delineating the neurobiological mechanisms that underlie memory. A key finding from behavioral studies of extinction is that extinction eliminates behavior without eliminating the original memory; extinguished behavior often returns with time or with a return to the context in which the original learning occurred. This persistence of the original memory after extinction creates a challenge for clinical applications that use extinction as part of a treatment intervention. Consequently, a goal of recent neurobiological research on extinction is to identify potential pharmacological targets that may result in persistent extinction. Drugs that promote epigenetic changes are particularly promising because they can result in a long-term molecular signal that, combined with the appropriate behavioral treatment, can cause persistent changes in behavior induced by extinction. We will review evidence demonstrating extinction enhancements by drugs that target epigenetic mechanisms and will describe some of the challenges that epigenetic approaches face in promoting persistent suppression of memories.


bioRxiv | 2018

Automethylation of PRC2 fine-tunes its catalytic activity on chromatin

Chul-Hwan Lee; Jeffrey Granat; Jia-Ray Yu; Gary LeRoy; James M. Stafford; Danny Reinberg

The catalytic activity of PRC2 is central to maintain transcriptional repression by H3K27me3-decorated facultative heterochromatin in mammalian cells. To date, multiple factors have been reported to regulate PRC2 activity. Here, we demonstrate that PRC2 methylates itself on EZH1/2 and SUZ12 subunits, with EZH1/2-K514 being the major automethylation site in cells. The functional studies of automethylation on EZH2 indicate automethylation as a self-activating mechanism for PRC2 in the absence of stimulatory cofactors like AEBP2. Together, our study reveals PRC2 automethylation as a novel regulatory mechanism of PRC2 activity on chromatin.


bioRxiv | 2018

Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma

James M. Stafford; Chul-Hwan Lee; Philipp Voigt; Nicolas Descostes; Ricardo Saldaña-Meyer; Jia-Ray Yu; Gary LeRoy; Ozgur Oksuz; Jessica R. Chapman; Fernando Suarez; Aram S. Modrek; N. Sumru Bayin; Dimitris Placantonakis; Matthias A. Karajannis; Matija Snuderl; Beatrix Ueberheide; Danny Reinberg

A methionine substitution at lysine 27 on histone H3 variants (H3K27M) characterizes ~80% of diffuse intrinsic pontine gliomas (DIPG) and inhibits PRC2 in a dominant negative fashion. Yet, the mechanisms for this inhibition and abnormal epigenomic landscape have not been resolved. Using quantitative proteomics, we discovered that robust PRC2 inhibition requires levels of H3K27M greatly exceeding those of PRC2, seen in DIPG. While PRC2 inhibition requires interaction with H3K27M, we found this interaction on chromatin is transient with PRC2 largely being released from H3K27M. Unexpectedly, inhibition persisted even after PRC2 dissociated from H3K27M-chromatin suggesting a lasting impact on PRC2. Furthermore, allosterically activated PRC2 is particularly sensitive to K27M leading to a failure to spread H3K27me3 at distinct foci. In turn, levels of Polycomb antagonists such as H3K36me2 are elevated suggesting a more global, downstream effect on the epigenome. Together, these findings reveal the conditions required for H3K27M-mediated PRC2 inhibition and reconcile seemingly paradoxical effects of H3K27M on PRC2 recruitment and activity.

Collaboration


Dive into the James M. Stafford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias A. Karajannis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge