Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Masuoka is active.

Publication


Featured researches published by James Masuoka.


Clinical Microbiology Reviews | 2004

Surface Glycans of Candida albicans and Other Pathogenic Fungi: Physiological Roles, Clinical Uses, and Experimental Challenges

James Masuoka

SUMMARY Although fungi have always been with us as commensals and pathogens, fungal infections have been increasing in frequency over the past few decades. There is a growing body of literature describing the involvement of carbohydrate groups in various aspects of fungal disease. Carbohydrates comprising the cell wall or capsule, or as a component of glycoproteins, are the fungal cell surface entities most likely to be exposed to the surrounding environment. Thus, the fungus-host interaction is likely to involve carbohydrates before DNA, RNA, or even protein. The interaction between fungal and host cells is also complex, and early studies using whole cells or crude cell fractions often produced seemingly conflicting results. What was needed, and what has been developing, is the ability to identify specific glycan structures and determine how they interact with immune system components. Carbohydrate analysis is complicated by the complexity of glycan structures and by the challenges of separating and detecting carbohydrates experimentally. Advances in carbohydrate chemistry have enabled us to move from the foundation of composition analysis to more rapid characterization of specific structures. This, in turn, will lead to a greater understanding of how fungi coexist with their hosts as commensals or exist in conflict as pathogens.


Microbiology | 1997

Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity

James Masuoka; Kevin C. Hazen

Cell surface hydrophobicity (CSH) has been shown to be an important factor in the ability of the opportunistic pathogenic yeast Candida albicans to adhere to surfaces. Hydrophobic cells adhere more readily to host tissue, and are more resistant to phagocytic killing, than hydrophilic cells. Consequently, CSH plays an important role in the pathogenicity of C. albicans. Previous work suggested a relationship between CSH and cell wall protein glycosylation. The present work tests the hypothesis that changes in outer chain mannosylation, rather than complete loss of oligosaccharide groups, are sufficient to modulate CSH. These studies compared wild-type cells to a variant that has altered mannosylation and is hydrophobic under conditions in which wild-type cells are hydrophilic. Composition analysis of cell surface digests showed that the glycosylation of wild-type cell surface proteins was much more extensive than that seen in the variant. Antibodies which recognize the acid-labile and acid-stable portions of C. albicans mannan showed not only differences between wild-type and variant cells but also differences between wild-type hydrophilic and wild-type hydrophobic cells. The results suggest that exposure of surface hydrophobic regions on C. albicans may be related to the abundance of phosphodiester-linked, acid-labile mannosyl groups rather than the complete loss of outer chain mannosylation on cell wall proteins.


Journal of Bacteriology | 2001

Cloning and Analysis of a Candida albicans Gene That Affects Cell Surface Hydrophobicity

David R. Singleton; James Masuoka; Kevin C. Hazen

The opportunistic pathogenic yeast Candida albicans exhibits growth phase-dependent changes in cell surface hydrophobicity, which has been correlated with adhesion to host tissues. Cell wall proteins that might contribute to the cell surface hydrophobicity phenotype were released by limited glucanase digestion. These proteins were initially characterized by their rates of retention during hydrophobic interaction chromatography--high-performance liquid chromatography and used as immunogens for monoclonal antibody production. The present work describes the cloning and functional analysis of a C. albicans gene encoding a 38-kDa protein recognized by the monoclonal antibody 6C5-H4CA. The 6C5-H4CA antigen was resolved by two-dimensional electrophoresis, and a partial protein sequence was determined by mass spectrometry analysis of tryptic fragments. The obtained peptides were used to identify the gene sequence from the unannotated C. albicans DNA database. The antibody epitope was provisionally mapped by peptide display panning, and a peptide sequence matching the epitope was identified in the gene sequence. The gene sequence encodes a novel open reading frame (ORF) of unknown function that is highly similar to several other C. albicans ORFs and to a single Saccharomyces cerevisiae ORF. Knockout of the gene resulted in a decrease in measurable cell surface hydrophobicity and in adhesion of C. albicans to fibronectin. The results suggest that the 38-kDa protein is a hydrophobic surface protein that meditates binding to host target proteins.


Infection and Immunity | 2001

Comparison of the Hydrophobic Properties of Candida albicans and Candida dubliniensis

Kevin C. Hazen; Jean G. Wu; James Masuoka

ABSTRACT Although Candida dubliniensis is a close genetic relative of Candida albicans, it colonizes and infects fewer sites. Nearly all instances of candidiasis caused byC. dubliniensis are restricted to the oral cavity. As cell surface hydrophobicity (CSH) influences virulence of C. albicans, CSH properties of C. dubliniensis were investigated and compared toC. albicans. Growth temperature is one factor which affects the CSH status of stationary-phase C. albicans. However, C. dubliniensis, similar to other pathogenic non-albicans species of Candida, was hydrophobic regardless of growth temperature. For allCandida species tested in this study (C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis), CSH status correlated with coaggregation with the anaerobic oral bacteriumFusobacterium nucleatum. Previous studies have shown that CSH status of C. albicans involves multiple surface proteins and surface protein N-glycans. The hydrophobic surface glycoprotein CAgp38 appears to be expressed by C. albicans constitutively regardless of growth temperature and medium. C. dubliniensis expresses a 38-kDa protein that cross-reacts with the anti-CAgp38 monoclonal antibody; however, expression of the protein was growth medium and growth temperature dependent. The anti-CAgp38 monoclonal antibody has been shown to inhibit adhesion of C. albicans to extracellular matrix proteins and to vascular endothelial cells. Since protein glycosylation influences the CSH status of C. albicans, we compared the cell wall mannoprotein content and composition betweenC. albicans and C. dubliniensis. Similar bulk compositional levels of hexose, phosphate, and protein in their N-glycans were determined. However, a component of the C. albicans N-glycan, acid-labile phosphooligomannoside, is expressed much less or negligibly by C. dubliniensis, and when present, the oligomannosides are predominantly less than five mannose residues in length. In addition, the acid-labile phosphooligomannoside profiles varied among the three strains of C. dubliniensis we tested, indicating the N-glycan of C. dubliniensis differs from C. albicans. For C. albicans, the acid-labile phosphooligomannoside influences virulence and surface fibrillar conformation, which affects exposure of hydrophobic surface proteins. Given the combined role in C. albicans of expression of specific surface hydrophobic proteins in pathogenesis and of surface protein glycosylation on exposure of the proteins, the lack of these virulence-associated CSH entities in C. dubliniensis could contribute to its limited ability to cause disseminated infections.


Infection and Immunity | 2004

Cell Wall Mannan and Cell Surface Hydrophobicity in Candida albicans Serotype A and B Strains

James Masuoka; Kevin C. Hazen

ABSTRACT Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked β-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available β-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile β-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs.


Eukaryotic Cell | 2005

Surface Hydrophobicity Changes of Two Candida albicans Serotype B mnn4Δ Mutants

David R. Singleton; James Masuoka; Kevin C. Hazen

ABSTRACT Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the CSH phenotype. The acid-labile fraction of C. albicans is unique among fungi, in that it is composed of an extended polymer of β-1,2-mannose linked to the acid-stable region of the N-glycan by a phosphodiester bond. C. albicans serotype A and B strains both contain a β-1,2-mannose acid-labile moiety, but only serotype A strains contain additional β-1,2-mannose in the acid-stable region. A knockout of the C. albicans homolog of the Saccharomyces cerevisiae MNN4 gene was generated in two serotype B C. albicans patient isolates by using homologous gene replacement techniques, with the anticipation that they would be deficient in the acid-labile fraction and, therefore, demonstrate perturbed CSH. The resulting mnn4Δ-deficient derivative has no detectable phosphate-linked β-1,2-mannose in its cell wall, and hydrophobicity is increased significantly under conditions that promote the hydrophilic phenotype. The mnn4Δ mutant also demonstrates an unanticipated perturbation in the acid-stable mannan fraction. The present study reports the first genetic knockout constructed in a serotype B C. albicans strain and represents an important step for dissecting the regulation of CSH.


Microbiology | 2002

Complications in cell-surface labelling by biotinylation of Candida albicans due to avidin conjugate binding to cell-wall proteins

James Masuoka; Lori N. Guthrie; Kevin C. Hazen

Initial contact between the opportunistic fungal pathogen Candida albicans and host tissue occurs at the cell surface. Biotin derivatives have been used to label the cell-surface proteins of yeasts, with labelled proteins subsequently detected by avidin-reporter conjugates. Previous work has indicated that avidin can bind to C. albicans proteins in the absence of biotin, suggesting a possible host-cell-recognition mechanism by fungal cell-surface proteins. To investigate this mechanism, Western blots of proteins extracted from biotinylated and mock-treated cells were probed with avidin or modified-avidin reagents. Each avidin reagent bound to cell-wall proteins extracted from non-biotinylated cells. Binding did not appear to be due to the lectin-like activity of the cell-wall proteins of C. albicans or to the presence of biotin in the sample itself. Binding was inhibited by added biotin, by the chaotrope KSCN and by NaCl in a concentration-dependent manner, although inhibition varied among the avidin conjugates tested. Thus, the non-specific binding of avidin to the cell-wall proteins of C. albicans appears to involve hydrophobic and electrostatic interactions, depending on the particular avidin species. These observations demonstrate potential pitfalls in the use of avidin-biotin complexes to identify cell-surface molecules and could provide insights into protein-protein interactions at the C. albicans cell wall.


Journal of Clinical Microbiology | 2009

Determination of Echinocandin MICs for Candida Species in Less than 8 Hours: Comparison of the Rapid Susceptibility Assay with the Clinical and Laboratory Standards Institute's Broth Microdilution Assay

Kevin C. Hazen; Dawn Dirks; James Masuoka

ABSTRACT The echinocandins prevent fungal cell wall synthesis by inhibiting β-1,3-glucan synthesis, a significant glucose-consuming process. Previous studies suggested that echinocandin inhibitory activity is evident within 1 h of exposure. We hypothesized that a susceptibility assay based on glucose consumption may provide clinically useful MICs rapidly. The rapid susceptibility assay (RSA), which provides MICs in less than 8 h, was compared with the standard broth microdilution susceptibility assay (Clinical and Laboratory Standards Institute, document M27-A3, 2008) for 56 Candida species strains. Variables which are known to influence MICs determined by the M27-A3 method were also assessed for their effects on the RSA results. Excellent agreement (>90%) between the results of the RSA and M27-A3 methods was achieved for all three FDA-approved echinocandins (micafungin, caspofungin, and anidulafungin). Candida lusitaniae strains were responsible for most of the discordant results. Assay variables such as the test medium, the age of the inoculum culture, and the presence of human serum affected MIC results from the RSA and the M27-A3 method similarly. The RSA is equivalent to the standard M27-A3 method for determining echinocandin MICs for Candida species. The RSA provides MIC results in less than 8 h and can be applied to old and young yeast colonies. The assay could potentially provide clinically useful MICs on the same day that yeast growth from a specimen is first detected on solid medium.


Glycobiology | 1999

Differences in the acid-labile component of Candida albicans mannan from hydrophobic and hydrophilic yeast cells

James Masuoka; Kevin C. Hazen


Fems Immunology and Medical Microbiology | 1999

Inhibition of Candida albicans attachment to extracellular matrix by antibodies which recognize hydrophobic cell wall proteins

James Masuoka; Guangqin Wu; Pati M. Glee; Kevin C. Hazen

Collaboration


Dive into the James Masuoka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn Dirks

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar

Guangqin Wu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Jean G. Wu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Lori N. Guthrie

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge