Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James N. Sleigh is active.

Publication


Featured researches published by James N. Sleigh.


Disease Models & Mechanisms | 2011

The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy

James N. Sleigh; Thomas H. Gillingwater; Kevin Talbot

Spinal muscular atrophy (SMA), which is caused by inactivating mutations in the survival motor neuron 1 (SMN1) gene, is characterized by loss of lower motor neurons in the spinal cord. The gene encoding SMN is very highly conserved in evolution, allowing the disease to be modeled in a range of species. The similarities in anatomy and physiology to the human neuromuscular system, coupled with the ease of genetic manipulation, make the mouse the most suitable model for exploring the basic pathogenesis of motor neuron loss and for testing potential treatments. Therapies that increase SMN levels, either through direct viral delivery or by enhancing full-length SMN protein expression from the SMN1 paralog, SMN2, are approaching the translational stage of development. It is therefore timely to consider the role of mouse models in addressing aspects of disease pathogenesis that are most relevant to SMA therapy. Here, we review evidence suggesting that the apparent selective vulnerability of motor neurons to SMN deficiency is relative rather than absolute, signifying that therapies will need to be delivered systemically. We also consider evidence from mouse models suggesting that SMN has its predominant action on the neuromuscular system in early postnatal life, during a discrete phase of development. Data from these experiments suggest that the timing of therapy to increase SMN levels might be crucial. The extent to which SMN is required for the maintenance of motor neurons in later life and whether augmenting its levels could treat degenerative motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), requires further exploration.


PLOS Genetics | 2010

Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

Maria Dimitriadi; James N. Sleigh; Amy K. Walker; Howard Chia-Hao Chang; Anindya Sen; Geetika Kalloo; Jevede Harris; Tom Barsby; Melissa B. Walsh; John S. Satterlee; Chris Li; David Van Vactor; Spyros Artavanis-Tsakonas; Anne C. Hart

Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy

Suzan M. Hammond; Gareth Hazell; Fazel Shabanpoor; Amer F. Saleh; Melissa Bowerman; James N. Sleigh; Katharina E. Meijboom; Haiyan Zhou; Francesco Muntoni; Kevin Talbot; Michael J. Gait; Matthew J.A. Wood

Significance Splice-switching oligonucleotide (SSO) treatment in spinal muscular atrophy (SMA) has quickly become a clinical reality, but without an effective delivery system, the practicalities of delivering SSO therapy efficiently might preclude its widespread use. Our peptide-conjugated SSOs are being designed for clinical trials for the treatment of Duchenne muscular dystrophy. Here, we report advanced phosphorodiamidate oligomer (PMO) internalizing peptide (Pip) peptides that effectively deliver SSOs bodywide and at doses an order-of-magnitude lower than required by naked SSOs in a mouse model of SMA. Furthermore, our peptide-SSO is able to deliver to the CNS of adult mice. This study thus presents an oligonucleotide showing activity in the CNS following a systemic route with peptide delivery. The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA.


Human Molecular Genetics | 2014

Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy

James N. Sleigh; Antón Barreiro-Iglesias; Peter L. Oliver; Angeliki Biba; Thomas Becker; Kay E. Davies; Catherina G. Becker; Kevin Talbot

Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.


Annals of Neurology | 2016

Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy

Eilidh Somers; Robert D. Lees; Katie Hoban; James N. Sleigh; Haiyan Zhou; Francesco Muntoni; Kevin Talbot; Thomas H. Gillingwater; Simon H. Parson

Spinal muscular atrophy (SMA) is a major inherited cause of infant death worldwide. It results from mutations in a single, ubiquitously expressed gene (SMN1), with loss of lower motor neurons being the primary pathological signature. Systemic defects have also been reported in SMA patients and animal models. We investigated whether defects associated with the vasculature contribute to motor neuron pathology in SMA.


Proceedings of the National Academy of Sciences of the United States of America | 2012

General anesthesia alters time perception by phase shifting the circadian clock

James F. Cheeseman; Eva C. Winnebeck; Craig D. Millar; Lisa S. Kirkland; James N. Sleigh; Mark B. Goodwin; Matthew D. M. Pawley; Guy Bloch; Konstantin Lehmann; Randolf Menzel; Guy R. Warman

Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing “jet lag” and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.


Human Molecular Genetics | 2011

A novel Caenorhabditis elegans allele, smn-1(cb131), mimicking a mild form of spinal muscular atrophy, provides a convenient drug screening platform highlighting new and pre-approved compounds

James N. Sleigh; Steven D. Buckingham; Behrooz Esmaeili; Mohan Viswanathan; Edwin Cuppen; Bethany M. Westlund; David B. Sattelle

Spinal muscular atrophy (SMA), an autosomal recessive genetic disorder, is characterized by the selective degeneration of lower motor neurons, leading to muscle atrophy and, in the most severe cases, paralysis and death. Deletions and point mutations cause reduced levels of the widely expressed survival motor neuron (SMN) protein, which has been implicated in a range of cellular processes. The mechanisms underlying disease pathogenesis are unclear, and there is no effective treatment. Several animal models have been developed to study SMN function including the nematode, Caenorhabditis elegans, in which a large deletion in the gene homologous to SMN, smn-1, results in neuromuscular dysfunction and larval lethality. Although useful, this null mutant, smn-1(ok355), is not well suited to drug screening. We report the isolation and characterization of smn-1(cb131), a novel allele encoding a substitution in a highly conserved residue of exon 2, resembling a point mutation found in a patient with type IIIb SMA. The smn-1(cb131) animals display milder yet similar defects when compared with the smn-1 null mutant. Using an automated phenotyping system, mutants were shown to swim slower than wild-type animals. This phenotype was used to screen a library of 1040 chemical compounds for drugs that ameliorate the defect, highlighting six for subsequent testing. 4-aminopyridine, gaboxadol hydrochloride and N-acetylneuraminic acid all rescued at least one aspect of smn-1 phenotypic dysfunction. These findings may assist in accelerating the development of drugs for the treatment of SMA.


Neurobiology of Aging | 2014

Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

Bradley J. Turner; Neza Alfazema; Rebecca K. Sheean; James N. Sleigh; Kay E. Davies; Malcolm K. Horne; Kevin Talbot

Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS.


Human Molecular Genetics | 2014

Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice.

James N. Sleigh; Stuart J. Grice; Robert W. Burgess; Kevin Talbot; Muhammed Z. Cader

Dominant mutations in GARS, encoding the essential enzyme glycyl-tRNA synthetase (GlyRS), result in a form of Charcot-Marie-Tooth disease, type 2D (CMT2D), predominantly characterized by lower motor nerve degeneration. GlyRS charges the amino acid glycine with its cognate tRNA and is therefore essential for protein translation. However, the underlying mechanisms linking toxic gain-of-function GARS mutations to lower motor neuron degeneration remain unidentified. The neuromuscular junction (NMJ) appears to be an early target for pathology in a number of peripheral nerve diseases and becomes denervated at later stages in two mouse models of CMT2D. We therefore performed a detailed longitudinal examination of NMJs in the distal lumbrical muscles and the proximal transversus abdominis (TVA) muscles of wild-type and Gars mutant mice. We determined that mutant lumbrical NMJs display a persistent defect in maturation that precedes a progressive, age-dependent degeneration. Conversely, the TVA remains relatively unaffected, with only a subtle, short-lived impairment in pre- and post-synaptic development and no reduction in lower motor neuron connectivity to muscle. Together, these observations suggest that mutant Gars is associated with compromised development of the NMJ prior to synaptic degeneration and highlight the neuromuscular synapse as an important site of early, selective pathology in CMT2D mice.


Disease Models & Mechanisms | 2013

Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease

Laurent Bogdanik; James N. Sleigh; Cong Tian; Mark E. Samuels; Karen Bedard; Kevin L. Seburn; Robert W. Burgess

SUMMARY Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.

Collaboration


Dive into the James N. Sleigh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Burgess

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge