Stuart J. Grice
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart J. Grice.
PLOS Genetics | 2011
Stuart J. Grice; Ji-Long Liu
Spinal muscular atrophy is a severe neurogenic disease that is caused by mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein is required for the assembly of small nuclear ribonucleoproteins and a dramatic reduction of the protein leads to cell death. It is currently unknown how the reduction of this ubiquitously essential protein can lead to tissue-specific abnormalities. In addition, it is still not known whether the disease is caused by developmental or degenerative defects. Using the Drosophila system, we show that SMN is enriched in postembryonic neuroblasts and forms a concentration gradient in the differentiating progeny. In addition to the developing Drosophila larval CNS, Drosophila larval and adult testes have a striking SMN gradient. When SMN is reduced in postembryonic neuroblasts using MARCM clonal analysis, cell proliferation and clone formation defects occur. These SMN mutant neuroblasts fail to correctly localise Miranda and have reduced levels of snRNAs. When SMN is removed, germline stem cells are lost more frequently. We also show that changes in SMN levels can disrupt the correct timing of cell differentiation. We conclude that highly regulated SMN levels are essential to drive timely cell proliferation and cell differentiation.
Human Molecular Genetics | 2014
James N. Sleigh; Stuart J. Grice; Robert W. Burgess; Kevin Talbot; Muhammed Z. Cader
Dominant mutations in GARS, encoding the essential enzyme glycyl-tRNA synthetase (GlyRS), result in a form of Charcot-Marie-Tooth disease, type 2D (CMT2D), predominantly characterized by lower motor nerve degeneration. GlyRS charges the amino acid glycine with its cognate tRNA and is therefore essential for protein translation. However, the underlying mechanisms linking toxic gain-of-function GARS mutations to lower motor neuron degeneration remain unidentified. The neuromuscular junction (NMJ) appears to be an early target for pathology in a number of peripheral nerve diseases and becomes denervated at later stages in two mouse models of CMT2D. We therefore performed a detailed longitudinal examination of NMJs in the distal lumbrical muscles and the proximal transversus abdominis (TVA) muscles of wild-type and Gars mutant mice. We determined that mutant lumbrical NMJs display a persistent defect in maturation that precedes a progressive, age-dependent degeneration. Conversely, the TVA remains relatively unaffected, with only a subtle, short-lived impairment in pre- and post-synaptic development and no reduction in lower motor neuron connectivity to muscle. Together, these observations suggest that mutant Gars is associated with compromised development of the NMJ prior to synaptic degeneration and highlight the neuromuscular synapse as an important site of early, selective pathology in CMT2D mice.
Biology Open | 2014
Gabriel N. Aughey; Stuart J. Grice; Qing-Ji Shen; Yichi Xu; Chia-Chun Chang; Ghows Azzam; Pei-Yu Wang; Luke Freeman-Mills; Li-Mei Pai; Li-Ying Sung; Jun Yan; Ji-Long Liu
ABSTRACT The essential metabolic enzyme CTP synthase (CTPsyn) can be compartmentalised to form an evolutionarily-conserved intracellular structure termed the cytoophidium. Recently, it has been demonstrated that the enzymatic activity of CTPsyn is attenuated by incorporation into cytoophidia in bacteria and yeast cells. Here we demonstrate that CTPsyn is regulated in a similar manner in Drosophila tissues in vivo. We show that cytoophidium formation occurs during nutrient deprivation in cultured cells, as well as in quiescent and starved neuroblasts of the Drosophila larval central nervous system. We also show that cytoophidia formation is reversible during neurogenesis, indicating that filament formation regulates pyrimidine synthesis in a normal developmental context. Furthermore, our global metabolic profiling demonstrates that CTPsyn overexpression does not significantly alter CTPsyn-related enzymatic activity, suggesting that cytoophidium formation facilitates metabolic stabilisation. In addition, we show that overexpression of CTPsyn only results in moderate increase of CTP pool in human stable cell lines. Together, our study provides experimental evidence, and a mathematical model, for the hypothesis that inactive CTPsyn is incorporated into cytoophidia.
PLOS ONE | 2012
Mary Kearney; Jonathan Spindler; Ann Wiegand; Wei Shao; Elizabeth M. Anderson; Frank Maldarelli; Francis W. Ruscetti; John W. Mellors; Steve H. Hughes; Stuart J. Grice; John M. Coffin
Xenotropic murine leukemia virus (MLV)-related retrovirus (XMRV) was reported to be associated with prostate cancer by Urisman, et al. in 2006 and chronic fatigue syndrome (CFS) by Lombardi, et al. in 2009. To investigate this association, we independently evaluated plasma samples from 4 patients with CFS reported by Lombardi, et al. to have XMRV infection and from 5 healthy controls reported to be XMRV uninfected. We also analyzed viral sequences obtained from supernatants of cell cultures found to contain XMRV after coculture with 9 clinical samples from 8 patients. A qPCR assay capable of distinguishing XMRV from endogenous MLVs showed that the viral sequences detected in the CFS patient plasma behaved like endogenous MLVs and not XMRV. Single-genome sequences (Nu200a=u200a89) from CFS patient plasma were indistinguishable from endogenous MLVs found in the mouse genome that are distinct from XMRV. By contrast, XMRV sequences were detected by qPCR in 2 of the 5 plasma samples from healthy controls (sequencing of the qPCR product confirmed XMRV not MLV). Single-genome sequences (Nu200a=u200a234) from the 9 culture supernatants reportedly positive for XMRV were indistinguishable from XMRV sequences obtained from 22Rv1 and XMRV-contaminated 293T cell-lines. These results indicate that MLV DNA detected in the plasma samples from CFS patients evaluated in this study was from contaminating mouse genomic DNA and that XMRV detected in plasma samples from healthy controls and in cultures of patient samples was due to cross-contamination with XMRV (virus or nucleic acid).
Human Molecular Genetics | 2015
Stuart J. Grice; James N. Sleigh; William W. Motley; Ji-Long Liu; Robert W. Burgess; Kevin Talbot; M. Zameel Cader
Charcot–Marie–Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.
BioEssays | 2011
Stuart J. Grice; James N. Sleigh; Ji-Long Liu; David B. Sattelle
Invertebrate genetic models with their tractable neuromuscular systems are effective vehicles for the study of human nerve and muscle disorders. This is exemplified by insights made into spinal muscular atrophy (SMA) using the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. For speed and economy, these invertebrates offer convenient, whole‐organism platforms for genetic screening as well as RNA interference (RNAi) and chemical library screens, permitting the rapid testing of hypotheses related to disease mechanisms and the exploration of new therapeutic routes and drug candidates. Here, we discuss recent developments encompassing synaptic physiology, RNA processing, and screening of compound and genome‐scale RNAi libraries, showcasing the importance of invertebrate SMA models.
PLOS Genetics | 2016
Gabriel N. Aughey; Stuart J. Grice; Ji-Long Liu
CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn.
PLOS ONE | 2008
Sheena Lee; Arzu Sayin; Stuart J. Grice; Howard Burdett; Dilair Baban; Marcel van den Heuvel
Spinal Muscular Atrophy is a recessive genetic disease and affects lower motor neurones and muscle tissue. A single gene is disrupted in SMA: SMN1 activity is abolished but a second copy of the gene (SMN2) provides limited activity. While the SMN protein has been shown to function in the assembly of RNA-protein complexes, it is unclear how the overall reduction in SMN activity specifically results in the neuromuscular phenotypes. Similar to humans, reduced smn activity in the fly causes earliest phenotypes in neuromuscular tissues. To uncover the effects of reduced SMN activity, we have studied gene expression in control and diseased fly tissues using whole genome micro-arrays. A number of gene expression changes are recovered and independently validated. Identified genes show trends in their predicted function: several are consistent with the function of SMN, in addition some uncover novel pathways. This and subsequent genetic analysis in the fly indicates some of the identified genes could be taken for further studies as potential drug targets for SMA and other neuromuscular disorders.
PLOS Genetics | 2015
Stuart J. Grice; Ji-Long Liu; Caleb Webber
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic effects resulting from large structural variation can contribute to human disease.
Neuromuscular Disorders | 2013
James N. Sleigh; Stuart J. Grice; Kay E. Davies; Kevin Talbot
The 8th annual UK spinal muscular atrophy (SMA) Dr. Eduardo Tizzano (Hospital de Santa Creu i Sant research conference, jointly organised and sponsored by the SMA Trust and the Jennifer Trust for SMA, was held onOctober 3–4, 2011 inOxford, UK.Hosted by Prof. Kevin Talbot at the Oxford Belfry Hotel, the meeting was attended by over 40 researchers and clinicians from across Europe and a total of 17 platform presentations were given. The first day of talks provided a new perspective on the basic functions of the survival motor neuron (SMN) protein, challenged the general assumption that SMA is simply a disorder of the lower motor neuron, and provided interesting ideas on the cause of motor neuron specificity seen in the disease; the second day concentrated on practical aspects of clinical trials in SMA and explored some emerging therapies that are at the cusp of translation to human trials. Presentations on the first day were given by Prof. Michael Sendtner (University of Wurzburg, Germany) on a neuronal specific function of SMN, Dr. Thomas Wishart (University of Edinburgh, UK) on SMN protein expression at the synapse, Dr. Zameel Cader (University of Oxford, UK) on a non-cell autonomous mechanism of neuronal toxicity in distal SMA type V, Dr. Judith Sleeman (University of St. Andrews, UK) on small nuclear ribonucleoprotein dynamics and splicing, Prof. Thomas Gillingwater (University of Edinburgh, UK) on the differential susceptibility of tissues to SMN depletion, Dr. Simon Parson (University of Edinburgh, UK) on the microvasculature in a severe mouse model of SMA, Miss. Maria Gabriela Boza-Moran (University of London, UK) on using stem cells to elucidate pathological mechanisms of SMA, Dr. Heidi Fuller (Keele University, UK) on the proteomic effects of salbutamol treatment on SMA fibroblasts, and