Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Bagrow is active.

Publication


Featured researches published by James P. Bagrow.


Nature | 2010

Link communities reveal multiscale complexity in networks.

Yong-Yeol Ahn; James P. Bagrow; Sune Lehmann

Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein–protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.


Physical Review E | 2005

Local method for detecting communities.

James P. Bagrow; Erik M. Bollt

We propose a method of community detection that is computationally inexpensive and possesses physical significance to a member of a social network. This method is unlike many divisive and agglomerative techniques and is local in the sense that a community can be detected within a network without requiring knowledge of the entire network. A global application of this method is also introduced. Several artificial and real-world networks, including the famous Zachary karate club, are analyzed.


Scientific Reports | 2011

Flavor network and the principles of food pairing

Yong-Yeol Ahn; Sebastian E. Ahnert; James P. Bagrow; Albert-László Barabási

The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question of whether there are any general patterns that determine the ingredient combinations used in food today or principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor compounds shared by culinary ingredients. Western cuisines show a tendency to use ingredient pairs that share many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend to avoid compound sharing ingredients. Given the increasing availability of information on food preparation, our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.


PLOS ONE | 2011

Collective Response of Human Populations to Large-Scale Emergencies

James P. Bagrow; Dashun Wang; Albert-László Barabási

Despite recent advances in uncovering the quantitative features of stationary human activity patterns, many applications, from pandemic prediction to emergency response, require an understanding of how these patterns change when the population encounters unfamiliar conditions. To explore societal response to external perturbations we identified real-time changes in communication and mobility patterns in the vicinity of eight emergencies, such as bomb attacks and earthquakes, comparing these with eight non-emergencies, like concerts and sporting events. We find that communication spikes accompanying emergencies are both spatially and temporally localized, but information about emergencies spreads globally, resulting in communication avalanches that engage in a significant manner the social network of eyewitnesses. These results offer a quantitative view of behavioral changes in human activity under extreme conditions, with potential long-term impact on emergency detection and response.


Journal of Statistical Mechanics: Theory and Experiment | 2008

Evaluating local community methods in networks

James P. Bagrow

We present a new benchmarking procedure that is unambiguous and specific to local community finding methods, allowing one to compare the accuracy of various methods. We apply this to new and existing algorithms. A simple class of synthetic benchmark networks is also developed, capable of testing properties specific to these local methods.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Human language reveals a universal positivity bias

Peter Sheridan Dodds; Eric M. Clark; Suma Desu; Morgan R. Frank; Andrew J. Reagan; Jake Ryland Williams; Lewis Mitchell; Kameron Decker Harris; Isabel M. Kloumann; James P. Bagrow; Karine Megerdoomian; Matthew T. McMahon; Brian F. Tivnan; Christopher M. Danforth

Significance The most commonly used words of 24 corpora across 10 diverse human languages exhibit a clear positive bias, a big data confirmation of the Pollyanna hypothesis. The study’s findings are based on 5 million individual human scores and pave the way for the development of powerful language-based tools for measuring emotion. Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.


PLOS ONE | 2012

Mesoscopic Structure and Social Aspects of Human Mobility

James P. Bagrow; Yu-Ru Lin

The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility – the sets and sequences of visited locations – have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary “habitats” capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.


Physical Review E | 2012

Communities and bottlenecks: Trees and treelike networks have high modularity

James P. Bagrow

Much effort has gone into understanding the modular nature of complex networks. Communities, also known as clusters or modules, are typically considered to be densely interconnected groups of nodes that are only sparsely connected to other groups in the network. Discovering high quality communities is a difficult and important problem in a number of areas. The most popular approach is the objective function known as modularity, used both to discover communities and to measure their strength. To understand the modular structure of networks it is then crucial to know how such functions evaluate different topologies, what features they account for, and what implicit assumptions they may make. We show that trees and treelike networks can have unexpectedly and often arbitrarily high values of modularity. This is surprising since trees are maximally sparse connected graphs and are not typically considered to possess modular structure, yet the nonlocal null model used by modularity assigns low probabilities, and thus high significance, to the densities of these sparse tree communities. We further study the practical performance of popular methods on model trees and on a genealogical data set and find that the discovered communities also have very high modularity, often approaching its maximum value. Statistical tests reveal the communities in trees to be significant, in contrast with known results for partitions of sparse, random graphs.


Scientific Reports | 2015

Quantifying information flow during emergencies.

Liang Gao; Chaoming Song; Ziyou Gao; Albert-László Barabási; James P. Bagrow; Dashun Wang

Recent advances on human dynamics have focused on the normal patterns of human activities, with the quantitative understanding of human behavior under extreme events remaining a crucial missing chapter. This has a wide array of potential applications, ranging from emergency response and detection to traffic control and management. Previous studies have shown that human communications are both temporally and spatially localized following the onset of emergencies, indicating that social propagation is a primary means to propagate situational awareness. We study real anomalous events using country-wide mobile phone data, finding that information flow during emergencies is dominated by repeated communications. We further demonstrate that the observed communication patterns cannot be explained by inherent reciprocity in social networks, and are universal across different demographics.


EPL | 2008

Portraits of complex networks

James P. Bagrow; Erik M. Bollt; Joseph D. Skufca; Daniel ben-Avraham

We propose a method for characterizing large complex networks by introducing a new matrix structure, unique for a given network, which encodes structural information; provides useful visualization, even for very large networks; and allows for rigorous statistical comparison between networks. Dynamic processes such as percolation can be visualized using animation.

Collaboration


Dive into the James P. Bagrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Yeol Ahn

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sune Lehmann

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dashun Wang

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge