Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yong-Yeol Ahn is active.

Publication


Featured researches published by Yong-Yeol Ahn.


internet measurement conference | 2007

I tube, you tube, everybody tubes: analyzing the world's largest user generated content video system

Meeyoung Cha; Haewoon Kwak; Pablo Rodriguez; Yong-Yeol Ahn; Sue B. Moon

User Generated Content (UGC) is re-shaping the way people watch video and TV, with millions of video producers and consumers. In particular, UGC sites are creating new viewing patterns and social interactions, empowering users to be more creative, and developing new business opportunities. To better understand the impact of UGC systems, we have analyzed YouTube, the worlds largest UGC VoD system. Based on a large amount of data collected, we provide an in-depth study of YouTube and other similar UGC systems. In particular, we study the popularity life-cycle of videos, the intrinsic statistical properties of requests and their relationship with video age, and the level of content aliasing or of illegal content in the system. We also provide insights on the potential for more efficient UGC VoD systems (e.g. utilizing P2P techniques or making better use of caching). Finally, we discuss the opportunities to leverage the latent demand for niche videos that are not reached today due to information filtering effects or other system scarcity distortions. Overall, we believe that the results presented in this paper are crucial in understanding UGC systems and can provide valuable information to ISPs, site administrators, and content owners with major commercial and technical implications.


Nature | 2010

Link communities reveal multiscale complexity in networks.

Yong-Yeol Ahn; James P. Bagrow; Sune Lehmann

Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein–protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.


international world wide web conferences | 2007

Analysis of topological characteristics of huge online social networking services

Yong-Yeol Ahn; Seungyeop Han; Haewoon Kwak; Sue B. Moon; Hawoong Jeong

Social networking services are a fast-growing business in the Internet. However, it is unknown if online relationships and their growth patterns are the same as in real-life social networks. In this paper, we compare the structures of three online social networking services: Cyworld, MySpace, and orkut, each with more than 10 million users, respectively. We have access to complete data of Cyworlds ilchon (friend) relationships and analyze its degree distribution, clustering property, degree correlation, and evolution over time. We also use Cyworld data to evaluate the validity of snowball sampling method, which we use to crawl and obtain partial network topologies of MySpace and orkut. Cyworld, the oldest of the three, demonstrates a changing scaling behavior over time in degree distribution. The latest Cyworld datas degree distribution exhibits a multi-scaling behavior, while those of MySpace and orkut have simple scaling behaviors with different exponents. Very interestingly, each of the two e ponents corresponds to the different segments in Cyworlds degree distribution. Certain online social networking services encourage online activities that cannot be easily copied in real life; we show that they deviate from close-knit online social networks which show a similar degree correlation pattern to real-life social networks.


Scientific Reports | 2013

Virality Prediction and Community Structure in Social Networks

Lilian Weng; Filippo Menczer; Yong-Yeol Ahn

How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.


internet measurement conference | 2008

Comparison of online social relations in volume vs interaction: a case study of cyworld

Hyunwoo Chun; Haewoon Kwak; Young-Ho Eom; Yong-Yeol Ahn; Sue B. Moon; Hawoong Jeong

Online social networking services are among the most popular Internet services according to Alexa.com and have become a key feature in many Internet services. Users interact through various features of online social networking services: making friend relationships, sharing their photos, and writing comments. These friend relationships are expected to become a key to many other features in web services, such as recommendation engines, security measures, online search, and personalization issues. However, we have very limited knowledge on how much interaction actually takes place over friend relationships declared online. A friend relationship only marks the beginning of online interaction. Does the interaction between users follow the declaration of friend relationship? Does a user interact evenly or lopsidedly with friends? We venture to answer these questions in this work. We construct a network from comments written in guestbooks. A node represents a user and a directed edge a comments from a user to another. We call this network an activity network. Previous work on activity networks include phone-call networks [34, 35] and MSN messenger networks [27]. To our best knowledge, this is the first attempt to compare the explicit friend relationship network and implicit activity network. We have analyzed structural characteristics of the activity network and compared them with the friends network. Though the activity network is weighted and directed, its structure is similar to the friend relationship network. We report that the in-degree and out-degree distributions are close to each other and the social interaction through the guestbook is highly reciprocated. When we consider only those links in the activity network that are reciprocated, the degree correlation distribution exhibits much more pronounced assortativity than the friends network and places it close to known social networks. The k-core analysis gives yet another corroborating evidence that the friends network deviates from the known social network and has an unusually large number of highly connected cores. We have delved into the weighted and directed nature of the activity network, and investigated the reciprocity, disparity, and network motifs. We also have observed that peer pressure to stay active online stops building up beyond a certain number of friends. The activity network has shown topological characteristics similar to the friends network, but thanks to its directed and weighted nature, it has allowed us more in-depth analysis of user interaction.


Scientific Reports | 2011

Flavor network and the principles of food pairing

Yong-Yeol Ahn; Sebastian E. Ahnert; James P. Bagrow; Albert-László Barabási

The cultural diversity of culinary practice, as illustrated by the variety of regional cuisines, raises the question of whether there are any general patterns that determine the ingredient combinations used in food today or principles that transcend individual tastes and recipes. We introduce a flavor network that captures the flavor compounds shared by culinary ingredients. Western cuisines show a tendency to use ingredient pairs that share many flavor compounds, supporting the so-called food pairing hypothesis. By contrast, East Asian cuisines tend to avoid compound sharing ingredients. Given the increasing availability of information on food preparation, our data-driven investigation opens new avenues towards a systematic understanding of culinary practice.


Physical Review Letters | 2014

Optimal Network Modularity for Information Diffusion

Azadeh Nematzadeh; Emilio Ferrara; Alessandro Flammini; Yong-Yeol Ahn

We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.


Neuron | 2015

Cooperative and Competitive Spreading Dynamics on the Human Connectome

Bratislav Misic; Richard F. Betzel; Azadeh Nematzadeh; Joaquín Goñi; Alessandra Griffa; Patric Hagmann; Alessandro Flammini; Yong-Yeol Ahn; Olaf Sporns

Increasingly detailed data on the network topology of neural circuits create a need for theoretical principles that explain how these networks shape neural communication. Here we use a model of cascade spreading to reveal architectural features of human brain networks that facilitate spreading. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we investigate scenarios where perturbations initiated at seed nodes result in global cascades that interact either cooperatively or competitively. We find that hub regions and a backbone of pathways facilitate early spreading, while the shortest path structure of the connectome enables cooperative effects, accelerating the spread of cascades. Finally, competing cascades become integrated by converging on polysensory associative areas. These findings show that the organizational principles of brain networks shape global communication and facilitate integrative function.


PLOS ONE | 2010

Googling Social Interactions: Web Search Engine Based Social Network Construction

Sang Hoon Lee; Pan-Jun Kim; Yong-Yeol Ahn; Hawoong Jeong

Social network analysis has long been an untiring topic of sociology. However, until the era of information technology, the availability of data, mainly collected by the traditional method of personal survey, was highly limited and prevented large-scale analysis. Recently, the exploding amount of automatically generated data has completely changed the pattern of research. For instance, the enormous amount of data from so-called high-throughput biological experiments has introduced a systematic or network viewpoint to traditional biology. Then, is “high-throughput” sociological data generation possible? Google, which has become one of the most influential symbols of the new Internet paradigm within the last ten years, might provide torrents of data sources for such study in this (now and forthcoming) digital era. We investigate social networks between people by extracting information on the Web and introduce new tools of analysis of such networks in the context of statistical physics of complex systems or socio-physics. As a concrete and illustrative example, the members of the 109th United States Senate are analyzed and it is demonstrated that the methods of construction and analysis are applicable to various other weighted networks.


Physical Review E | 2013

Overlapping community detection in complex networks using symmetric binary matrix factorization

Zhong-Yuan Zhang; Yong Wang; Yong-Yeol Ahn

Discovering overlapping community structures is a crucial step to understanding the structure and dynamics of many networks. In this paper we develop a symmetric binary matrix factorization model to identify overlapping communities. Our model allows us not only to assign community memberships explicitly to nodes, but also to distinguish outliers from overlapping nodes. In addition, we propose a modified partition density to evaluate the quality of community structures. We use this to determine the most appropriate number of communities. We evaluate our methods using both synthetic benchmarks and real-world networks, demonstrating the effectiveness of our approach.

Collaboration


Dive into the Yong-Yeol Ahn's collaboration.

Top Co-Authors

Avatar

Sune Lehmann

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Flammini

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio Ferrara

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Filippo Menczer

Indiana University Bloomington

View shared research outputs
Researchain Logo
Decentralizing Knowledge