Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. McEvoy is active.

Publication


Featured researches published by James P. McEvoy.


Journal of the American Chemical Society | 2008

Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II

Eduardo M. Sproviero; José A. Gascón; James P. McEvoy; and Gary W. Brudvig; Victor S. Batista

This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of calcium.


Physical Chemistry Chemical Physics | 2004

Structure-based mechanism of photosynthetic water oxidation

James P. McEvoy; Gary W. Brudvig

The recently-published 3.5 A resolution X-ray crystal structure of a cyanobacterial photosystem II (PDB entry 1S5L) provides a detailed architecture of the oxygen-evolving complex (OEC) and the surrounding amino-acids [K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 2004, 203, 1831–1838]. The revealed geometry of the OEC lends weight to certain hypothesized mechanisms for water-splitting, including the one propounded by this group, in which a calcium-bound water acts as a nucleophile to attack the oxygen of a MnVO group in the crucial O–O bond-forming step [J. S. Vrettos, J. Limburg and G. W. Brudvig, Biochim. Biophys. Acta, 2001, 1503, 229–245]. Here we re-examine this mechanism in the light of the new crystallographic information and make detailed suggestions concerning the mechanistic functions (especially the redox and proton-transfer roles) of calcium, chloride and certain amino-acid residues in and around the OEC. In particular, we propose an important role for an arginine residue, CP43–Arg357, in abstracting protons from a substrate water molecule during the water-splitting reaction.


Journal of Chemical Theory and Computation | 2006

QM/MM Models of the O2-Evolving Complex of Photosystem II.

Eduardo M. Sproviero; José A. Gascón; James P. McEvoy; Gary W. Brudvig; Victor S. Batista

This paper introduces structural models of the oxygen-evolving complex of photosystem II (PSII) in the dark-stable S1 state, as well as in the reduced S0 and oxidized S2 states, with complete ligation of the metal-oxo cluster by amino acid residues, water, hydroxide, and chloride. The models are developed according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, applied in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus, recently reported at 3.5 Å resolution. Manganese and calcium ions are ligated consistently with standard coordination chemistry assumptions, supported by biochemical and spectroscopic data. Furthermore, the calcium-bound chloride ligand is found to be bound in a position consistent with pulsed electron paramagnetic resonance data obtained from acetate-substituted PSII. The ligation of protein ligands includes monodentate coordination of D1-D342, CP43-E354, and D1-D170 to Mn(1), Mn(3), and Mn(4), respectively; η(2) coordination of D1-E333 to both Mn(3) and Mn(2); and ligation of D1-E189 and D1-H332 to Mn(2). The resulting QM/MM structural models are consistent with available mechanistic data and also are compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements of PSII. It is, therefore, conjectured that the proposed QM/MM models are particularly relevant to the development and validation of catalytic water-oxidation intermediates.


Photochemical and Photobiological Sciences | 2005

The mechanism of photosynthetic water splitting

James P. McEvoy; Jose A. Gascon; Victor S. Batista; Gary W. Brudvig

Oxygenic photosynthesis, which provides the biosphere with most of its chemical energy, uses water as its source of electrons. Water is photochemically oxidized by the protein complex photosystem II (PSII), which is found, along with other proteins of the photosynthetic light reactions, in the thylakoid membranes of cyanobacteria and of green plant chloroplasts. Water splitting is catalyzed by the oxygen-evolving complex (OEC) of PSII, producing dioxygen gas, protons and electrons. O(2) is released into the atmosphere, sustaining all aerobic life on earth; product protons are released into the thylakoid lumen, augmenting a proton concentration gradient across the membrane; and photo-energized electrons pass to the rest of the electron-transfer pathway. The OEC contains four manganese ions, one calcium ion and (almost certainly) a chloride ion, but its precise structure and catalytic mechanism remain unclear. In this paper, we develop a chemically complete structure of the OEC and its environment by using molecular mechanics calculations to extend and slightly adjust the recently-obtained X-ray crystallographic model with reference to this structure and to some important recent experimental results.


Philosophical Transactions of the Royal Society B | 2008

QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II

Eduardo M. Sproviero; Katherine E. Shinopoulos; José A. Gascón; James P. McEvoy; Gary W. Brudvig; Victor S. Batista

This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single μ4-oxo-ligated Mn ion, often called the ‘dangling manganese’. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1→S2 transition should produce opposite effects on the two water-exchange rates.


Photosynthesis Research | 2008

Computational insights into the O2-evolving complex of photosystem II.

Eduardo M. Sproviero; James P. McEvoy; Jose A. Gascon; Gary W. Brudvig; Victor S. Batista

Mechanistic investigations of the water-splitting reaction of the oxygen-evolving complex (OEC) of photosystem II (PSII) are fundamentally informed by structural studies. Many physical techniques have provided important insights into the OEC structure and function, including X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy as well as mass spectrometry (MS), electron paramagnetic resonance (EPR) spectroscopy, and Fourier transform infrared spectroscopy applied in conjunction with mutagenesis studies. However, experimental studies have yet to yield consensus as to the exact configuration of the catalytic metal cluster and its ligation scheme. Computational modeling studies, including density functional (DFT) theory combined with quantum mechanics/molecular mechanics (QM/MM) hybrid methods for explicitly including the influence of the surrounding protein, have proposed chemically satisfactory models of the fully ligated OEC within PSII that are maximally consistent with experimental results. The inorganic core of these models is similar to the crystallographic model upon which they were based, but comprises important modifications due to structural refinement, hydration, and proteinaceous ligation which improve agreement with a wide range of experimental data. The computational models are useful for rationalizing spectroscopic and crystallographic results and for building a complete structure-based mechanism of water-splitting in PSII as described by the intermediate oxidation states of the OEC. This review summarizes these recent advances in QM/MM modeling of PSII within the context of recent experimental studies.


Nature Structural & Molecular Biology | 2002

Crystal structures of ferredoxin variants exhibiting large changes in [Fe-S] reduction potential.

K Chen; C.A Bonagura; Gareth J. Tilley; James P. McEvoy; Y.S Jung; Fraser A. Armstrong; C.D. Stout; B.K. Burgess

Elucidating how proteins control the reduction potentials (E0′) of [Fe–S] clusters is a longstanding fundamental problem in bioinorganic chemistry. Two site-directed variants of Azotobacter vinelandii ferredoxin I (FdI) that show large shifts in [Fe–S] cluster E0′ (100–200 mV versus standard hydrogen electrode (SHE)) have been characterized. High resolution X-ray structures of F2H and F25H variants in their oxidized forms, and circular dichroism (CD) and electron paramagnetic resonance (EPR) of the reduced forms indicate that the overall structure is not affected by the mutations and reveal that there is no increase in solvent accessibility nor any reorientation of backbone amide dipoles or NH–S bonds. The structures, combined with detailed investigation of the variation of E0′ with pH and temperature, show that the largest increases in E0′ result from the introduction of positive charge due to protonation of the introduced His residues. The smaller (50–100 mV) increases observed for the neutral form are proposed to occur by directing a Hδ+–Nδ− dipole toward the reduced form of the cluster.


Journal of Pharmacology and Experimental Therapeutics | 2014

Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency

Pishan Chang; Alexandra M E Zuckermann; Sophie Williams; Adam J. Close; Marife Cano-Jaimez; James P. McEvoy; John Spencer; Matthew C. Walker; Robin S.B. Williams

The medium chain triglyceride (MCT) ketogenic diet is a major treatment of drug-resistant epilepsy but is problematic, particularly in adults, because of poor tolerability. Branched derivatives of octanoic acid (OA), a medium chain fat provided in the diet have been suggested as potential new treatments for drug-resistant epilepsy, but the structural basis of this functionality has not been determined. Here we investigate structural variants of branched medium chain fatty acids as new seizure-control treatments. We initially employ a series of methyl-branched OA derivatives, and using the GABAA receptor antagonist pentylenetetrazol to induce seizure-like activity in rat hippocampal slices, we show a strong, branch-point–specific activity that improves upon the related epilepsy treatment valproic acid. Using low magnesium conditions to induce glutamate excitotoxicity in rat primary hippocampal neuronal cultures for the assessment of neuroprotection, we also show a structural dependence identical to that for seizure control, suggesting a related mechanism of action for these compounds in both seizure control and neuroprotection. In contrast, the effect of these compounds on histone deacetylase (HDAC) inhibition, associated with teratogenicity, shows no correlation with therapeutic efficacy. Furthermore, small structural modifications of the starting compounds provide active compounds without HDAC inhibitory effects. Finally, using multiple in vivo seizure models, we identify potent lead candidates for the treatment of epilepsy. This study therefore identifies a novel family of fatty acids, related to the MCT ketogenic diet, that show promise as new treatments for epilepsy control and possibly other MCT ketogenic diet-responding conditions, such as Alzheimer disease.


Biochemistry | 2008

Redox reactions of the non-heme iron in photosystem II: an EPR spectroscopic study.

James P. McEvoy; Gary W. Brudvig

Photosystem II (PSII) contains a non-heme ferrous ion, located on the stromal side of the protein in close proximity to quinones A and B (Q(A) and Q(B)). We used EPR spectroscopy to examine the temperature-dependent redox reactions of the iron-quinone site, using it as a probe of potentially physiologically relevant proton-coupled electron-transfer (PCET) reactions. Complete chemical oxidation of the non-heme iron at ambient temperatures was followed by cryogenic photoreduction, producing a temperature-dependent yield of Fe(2+)Q(A) (or Fe(3+)Q(A)(-))...Chl(+)/Car(+)/Y(D)(*) charge separations. These charge separations were subsequently observed to partially recombine in the dark at cryogenic temperatures. We observed no double photochemical charge separations upon illumination at temperatures <or=30 K, demonstrating that Q(A) and Fe(3+) together act as a single electron-accepting moiety at very low temperatures. Our results indicate the existence of two populations of the iron-quinone site in PSII, one whose Fe(3+) signal is abolished by illumination at liquid helium temperatures and one whose Fe(3+) signal is abolished by illumination only above 75 K. The observation of non-heme iron photoreduction at cryogenic temperatures (possibly at liquid helium temperatures and certainly above 75 K) implies the existence of a low reorganization energy proton-transfer (ET) pathway within the protein to the non-heme iron environment, of possible relevance to the PCET reactions of Q(B) and/or the non-heme iron itself. Furthermore, we observed the partial reoxidation of the non-heme iron by charge recombination with previously oxidized chlorophyll, carotenoid, and Y(D) within PSII. This electron transfer might be important in the photoprotective transfer of oxidative power away from P(680)(+) and the oxygen-evolving complex in stressed PSII centers.


Chemical Communications | 1999

Protein film cryovoltammetry: demonstrations with a 7Fe ([3Fe–4S] + [4Fe–4S]) ferredoxin

James P. McEvoy; Fraser A. Armstrong

Low-temperature protein film voltammetry, demonstrated here by studies of Fe–S clusters in the 7Fe ferredoxin from Thermoplasma acidophilum, offers a novel way to investigate active site redox reactions, allowing resolution of complex transformations and transient states, and providing an immediate and sensitive gauge of solvent effects.

Collaboration


Dive into the James P. McEvoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne K. Jones

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

B.K. Burgess

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge