Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James T. Colbert is active.

Publication


Featured researches published by James T. Colbert.


Plant Physiology | 1993

An mRNA Putatively Coding for an O-Methyltransferase Accumulates Preferentially in Maize Roots and Is Located Predominantly in the Region of the Endodermis

Bruce M. Held; Huiqing Wang; Isaac John; Eve Syrkin Wurtele; James T. Colbert

ZRP4, a 1.4-kb mRNA that preferentially accumulates in roots of young Zea mays L. plants, was identified by isolation of the corresponding cDNA clone. Genomic Southern analysis indicates that the zrp4 gene is represented once in the corn genome. The deduced ZRP4 polypeptide of 39,558 D is rich in leucine, serine, and alanine. Comparison of the deduced ZRP4 polypeptide sequence to polypeptide sequences of previously cloned plant and animal genes indicates that ZRP4 may be an O-methyltransferase. The ZRP4 mRNA preferentially accumulates in young roots and can be detected only at low levels in leaf, stem, and other shoot organs. ZRP4 mRNA accumulation is developmentally regulated within the root, with very low levels of accumulation in the meristematic region, higher levels in the regions of cell elongation, highest levels in the region of cell maturation, and low levels in the mature regions of the root. ZRP4 mRNA is predominantly located in the endodermis, with lower levels in the exodermis. An intriguing possibility is that the ZRP4 mRNA may code for an O-methyltransferase involved in suberin biosynthesis.


Plant Molecular Biology | 1985

Phytochrome regulation of phytochrome mRNA abundance.

James T. Colbert; Howard P. Hershey; Peter H. Quail

SummaryPure phytochrome RNA sequence synthesized in an SP6-derived in vitro transcription system has been used as a standard to quantitate phytochrome mRNA abundance in Avena seedlings using a filter hybridization assay. In 4-day-old etiolated Avena seedlings phytochrome mRNA represents ∼0.1% of the total poly(A)+ RNA. Irradiation of such seedlings with a saturating red-light pulse or continuous white light induces a decline in this mRNA that is detectable within 30 min and results in a 50% reduction by ∼60 min and >90% reduction within 5 h. The effect of the red-light pulse is reversed, approximately to the level of the far-red control, by an immediately subsequent far-red pulse. In seedlings maintained in extended darkness after the red-light pulse, the initial rapid decline in phytochrome mRNA level is followed by a slower reaccumulation such that 50–60% of the initial abundance is reached by 48 h. White-light grown seedlings transferred to darkness exhibit a similar accumulation of phytochrome mRNA that is accelerated by removal of residual Pfr with a far-red light pulse at the start of the dark period. The data establish that previously reported phytochrome-regulated changes in translatable phytochrome mRNA levels result from changes in the physical abundance of this mRNA rather than from altered translatability.


The Plant Cell | 1992

Red Light-Independent Instability of Oat Phytochrome mRNA in Vivo.

Kevin A. Seeley; Dennis H. Byrne; James T. Colbert

Phytochrome A (phyA) mRNA abundance decreased rapidly in total RNA samples isolated from 4-day-old etiolated oat seedlings following a red light pulse. Putative in vivo phyA mRNA degradation products were detectable both before and after red light treatment. Cordycepin-treated coleoptiles were unable to accumulate the chlorophyll a/b-binding protein mRNA in response to red light, indicating that cordycepin effectively inhibited mRNA synthesis. In cordycepin-treated coleoptiles, phyA mRNA rapidly decreased in abundance, consistent with the hypothesis that phyA mRNA is inherently unstable, rather than being destabilized after red light treatment of etiolated oat seedlings.


Plant Molecular Biology | 1987

Cloning of cDNA for phytochrome from etiolated Cucurbita and coordinate photoregulation of the abundance of two distinct phytochrome transcripts

James L. Lissemore; James T. Colbert; Peter H. Quail

We have isolated several cDNA clones for phytochrome from a dicot, Cucurbita pepo L. cv. Black Beauty (zucchini), and have used them to study the regulation of Cucurbita phytochrome mRNA levels. A cDNA library was constructed from poly(A)+ RNA isolated from etiolated Cucurbita hypocotyl hooks and enriched for phytochrome mRNA by size fractionation. This library was screened with a 32P-labeled fragment isolated from an Avena phytochrome cDNA clone. Several putative phytochrome clones were isolated and mapped by restriction endonuclease analysis. On the basis of this analysis there is no evidence for the expression of multiple phytochrome genes in Cucurbita. Recent sequence analysis has confirmed that the largest of these clones, pFMD1 (∼3.6 kb), does indeed encode phytochrome and that it contains the entire amino acid coding sequence for Cucurbita phytochrome (33). RNA blot analysis has revealed that two polyadenylated phytochrome transcripts (∼5.6 kb and ∼4.2 kb) are present in both cotyledons and hypocotyl hooks of Cucurbita. In etiolated Cucurbita seedlings given a saturating pulse of red light, the abundance of both transcripts coordinately declines to 50–60% of the dark levels within 3 h and reaccumulates to dark levels within 24 h. Reversal of induction of this response by a far-red light pulse immediately following red light treatment is not observed, which is in contrast to the far-red reversibility of the red light promoted decrease in phytochrome mRNA abundance observed in Avena (6). Etiolated seedlings transferred to continuous white light also show a coordinate decrease in the levels of the two RNAs to ∼40% of the dark levels within 3 h. The magnitude of the light-induced decline in phytochrome mRNA abundance in Cucurbita is substantially less than the decrease previously reported for Avena (6).


Plant Molecular Biology | 1990

Down-regulation of phytochrome mRNA abundance by red light and benzyladenine in etiolated cucumber cotyledons

J. L. S. Cotton; C. W. Ross; D. H. Byrne; James T. Colbert

Northern blot analysis revealed that a single 4.2 kb phytochrome mRNA species was detectable in cotyledons excised from five-day-old etiolated cucumber seedlings. Intact etiolated five-day-old cucumber seedlings were given a red light or benzyladenine treatment, and cotyledons were harvested at various times following treatment. The abundance of phytochrome mRNA in the cotyledons was quantitated using 32P-labeled RNA probes and slot blot analysis. By 2 h after irradiation the phytochrome mRNA level was reduced to 40% of the initial abundance and reaccumulation began by 3 h after irradiation. Reaccumulation of phytochrome mRNA to the time-zero dark control level was achieved by 10 h after treatment. A decrease in phytochrome mRNA abundance was evident by 2 h after benzyladenine treatment, and a maximal reduction to 45% of the time-zero dark control was attained by 4 h after treatment. No recovery of the phytochrome mRNA level was evident by 8 h after benzyladenine treatment. The abundance of actin mRNA was unaffected by benzyladenine treatment.


Planta | 1982

Leaf vasculature in sugarcane (Saccharum officinarum L.)

James T. Colbert; Ray F. Evert

The vascular system of the leaves of Saccharum officinarum L. is composed in part of a system of longitudinal strands that in any given transverse section may be divided into three types of bundle according to size and structure: small, intermediate, and large. Virtually all of the longitudinal strands intergrade, however, from one type bundle to another. For example, virutually all of the strands having large bundle anatomy appear distally in the blade as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. These large bundles, together with the intermediates that arise midway between them, extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of bundles at the base of the blade, both the total and mean cross-sectional areas (measured with a digitizer from electron micrographs) of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements.


Plant Molecular Biology | 1992

An mRNA that specifically accumulates in maize roots delineates a novel subset of developing cortical cells

Isaac John; Huiqing Wang; Bruce M. Held; Eve Syrkin Wurtele; James T. Colbert

A near full-length cDNA clone (pZRP3) corresponding to an mRNA that accumulates specifically in roots of maize was isolated. The ZRP3 mRNA is ca. 600 nucleotides in length. The amino acid sequence of the predicted polypeptide is rich in leucine (16%), proline (11%), and cysteine (8.5%). The zrp3 gene appears to be expressed exclusively in roots, whereas other ZRP3-related genes are expressed in additional organs of the maize plant. In situ hybridization shows that ZRP3 mRNA accumulation is largely confined to the cells of the cortical ground meristem. Furthermore, accumulation of this mRNA occurs within a distinct subset of cortical cells, the inner three to four cell layers.


Evolution: Education and Outreach | 2011

University Evolution Education: The Effect of Evolution Instruction on Biology Majors' Content Knowledge, Attitude Toward Evolution, and Theistic Position

Justin W. Rice; Joanne K. Olson; James T. Colbert

Issues regarding understanding of evolution and resistance to evolution education in the United States are of key importance to biology educators at all levels. While research has measured student views toward evolution at single points in time, few studies have been published investigating whether views of college seniors are any different than first-year students in the same degree program. Additionally, students choosing to major in biological sciences have largely been overlooked, as if their acceptance of evolution is assumed. This study investigated the understanding of evolution and attitude toward evolution held by students majoring in biological science during their first and fourth years in a public research university. Participants included students in a first-year introductory biology course intended for biological science majors and graduating seniors earning degrees in either biology or genetics. The portion of the survey reported here consisted of quantitative measures of students’ understanding of core concepts of evolution and their attitude toward evolution. The results indicate that students’ understanding of particular evolutionary concepts is significantly higher among seniors, but their attitude toward evolution is only slightly improved compared to their first-year student peers. When comparing first-year students and seniors, students’ theistic position was not significantly different.


Planta | 1993

Half-lives of oat mRNAs in vivo and in a polysome-based in-vitro system

Dennis H. Byrne; Kevin A. Seeley; James T. Colbert

We have used a cell-free polysome-based in-vitro mRNA-degradation system to investigate the halflives of plant cell mRNAs. In order to establish the fidelity of the in-vitro system, we used cordycepin to determine the in-vivo half-lives of β-tubulin and actin mRNAs in the primary leaves of 4-d-old etiolated oat (Avena sativa L.) seedlings. The in-vitro rank order of half-lives for phytochrome A (45 min), β-tubulin (105 min), and actin (220 min) mRNAs mimicked the in-vivo rank order. A pulse of red light given to excised etiolated primary leaves caused an in-vivo reduction in the half-life of β-tubulin mRNA. The selectivity of the polysome-based system was further demonstrated by the decrease in the half-life of β-tubulin mRNA (from 105 min to 60 min) induced by a pulse of red light given to the etiolated oat seedlings prior to isolation of polysomes. Red light did not affect the apparent half-lives of phytochrome A or actin mRNAs.


Evolution: Education and Outreach | 2010

The Theory of Evolution is Not an Explanation for the Origin of Life

Justin W. Rice; Daniel A. Warner; Clint D. Kelly; Michael P. Clough; James T. Colbert

The propagation of misconceptions about the theory of biological evolution must be addressed whenever and wherever they are encountered. The recent article by Paz-y-Mino and Espinoza in this journal contained several such misconceptions, including: that biological evolution explains the origin of life, confusion between biological and cosmological evolution, and the use of the term “Darwinism,” all of which we address here. We argue that science educators, and biology educators particularly, must be aware of these (and other) misconceptions and work to remove them from their classrooms.

Collaboration


Dive into the James T. Colbert's collaboration.

Top Co-Authors

Avatar

Peter H. Quail

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Higgs

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Howard P. Hershey

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge