Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter H. Quail is active.

Publication


Featured researches published by Peter H. Quail.


Planta | 1985

Phytochrome in green tissue: Spectral and immunochemical evidence for two distinct molecular species of phytochrome in light-grown Avena sativa L.

James G. Tokuhisa; S. M. Daniels; Peter H. Quail

A method is described for the extraction of phytochrome from chlorophyllous shoots of Avena sativa L. Poly(ethyleneimine) and salt fractionation are used to reduce chlorophyll and to increase the phytochrome concentration sufficiently to permit spectral and immunochemical analyses. The phototransformation difference spectrum of this phytochrome is distinct from that of phytochrome from etiolated shoots in that the maximum in the red region of the difference spectrum is shifted about 15 nm to a shorter wavelength. Immunochemical probing of electroblotted proteins (Western blotting), using a method sensitive to 50 pg, demonstrates the presence of two polypeptides in green tissue that bind antiphytochrome antibodies: a predominant species with a relative molecular mass (Mr) of 118000 and a lesser-abundant 124000-Mr polypeptide. Under nondenaturing conditions all of the 124000-Mr species is immunoprecipitable, but the 118000-Mr species remains in the supernatant. Peptide mapping and immunochemical analysis with monoclonal antibodies show that the 118000-Mr species has structural features that differ from etiolated-oat phytochrome. Mixing experiments show that these structural differences are intrinsic to the molecular species from these two tissues rather than being the result of post-homogenization modifications or interfering substances in the green-tissue extracts. Together the data indicate that the phytochrome that predominates in green-tissue has a polypeptide distinct from the well-characterized molecule from etiolated tissue.


Molecular Genetics and Genomics | 1988

Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato.

Robert A. Sharrock; Brian M. Parks; Maarten Koornneef; Peter H. Quail

SummaryThe auw mutant allele of the aurea locus in tomato has previously been shown to cause deficiency for the phytochrome polypeptide (Parks et al. 1987). We have begun to characterize the molecular basis and consequences of this deficiency. Genomic Southern blot analysis indicates that there are at least two and probably more phytochrome polypeptide structural genes in tomato. RNA blot analysis shows that the auw mutant contains normal levels of phytochrome mRNA and in vitro translation of auw poly(A)+ RNA yields a phytochrome apoprotein that is quantitatively and qualitatively indistinguishable on SDS-polyacrylamide gels from that synthesized from wild-type RNA. These results indicate that the phytochrome deficiency in aurea is not the result of lack of expression of phytochrome genes but is more likely due to instability of the phytochrome polypeptide in planta. Possible reasons for such instability are discussed. Analysis of the molecular phenotype of aurea indicates that the phytochrome-mediated increase in the abundance of the mRNA encoding chlorophyll a/b binding protein (cab) is severely restricted in the mutant as compared with wild-type tomato. Thus, the auw strain exhibits defective photoregulation of gene expression consistent with its very reduced level of the phytochrome photoreceptor.


Plant Molecular Biology | 1987

The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome.

B. M. Parks; A. M. Jones; P. Adamse; Maarten Koornneef; R.E. Kendrick; Peter H. Quail

The aurea locus mutant (auw) of tomato contains less than 5% of the level of phytochrome in wild-type tissue as measured by in vivo difference spectroscopy. Immunoblot analysis using antibodies directed against etiolated-oat phytochrome demonstrates that crude extracts of etiolated mutant tissue are deficient in a major immunodetectable protein (116 kDa) normally present in the parent wild type. Analyses of wild-type tissue extracts strongly indicate that the 116-kDa protein is phytochrome by showing that this protein: a) is degraded more rapidly in vitro after a brief far-red irradiation than after a brief red irradiation (Vierstra RD, Quail PH, Planta 156: 158–165, 1982); b) contains a covalently bound chromophore as detected by Zn-chromophore fluorescence on nitrocellulose blots; and c) has an apparent molecular mass comparable to phytochrome from other species on size exclusion chromatography under non-denaturing conditions. The demonstration that the aurea mutant is deficient in this 116-kDa phytochrome indicates that the lack of spectrally detectable phytochrome in this mutant is the result of a lesion which affects the abundance of the phytochrome molecule as opposed to its spectral integrity.


Gene | 1986

Nucleotide and amino acid sequence of a Cucurbita phytochrome cDNA clone: identification of conserved features by comparison with Avenu phytochrome

Robert A. Sharrock; James L. Lissemore; Peter H. Quail

The amino acid (aa) sequence of Cucurbita phytochrome has been deduced from the nucleotide (nt) sequence of a cDNA clone which was initially identified by hybridization to an Avena phytochrome cDNA clone. Cucurbita, a dicot, and Avena, a monocot, represent evolutionarily divergent groups of plants. The Cucurbita phytochrome polypeptide is 1123 aa in length, corresponding to 125 kDa. Overall, the Cucurbita and Avena phytochrome sequences are 65% homologous at both the nt and aa levels but this sequence conservation is not evenly distributed. Most of the N-terminal two-thirds of the aligned polypeptide chains exhibits localized regions of high conservation, while the extreme N terminus and the C-terminal one-third are less homologous. Comparison of the predicted hydropathic properties of these polypeptides also indicates conservation of domains of phytochrome structure. The possible correlation of these conserved structural features with previously identified functional domains of phytochrome is discussed.


Plant Molecular Biology | 1985

Phytochrome regulation of phytochrome mRNA abundance.

James T. Colbert; Howard P. Hershey; Peter H. Quail

SummaryPure phytochrome RNA sequence synthesized in an SP6-derived in vitro transcription system has been used as a standard to quantitate phytochrome mRNA abundance in Avena seedlings using a filter hybridization assay. In 4-day-old etiolated Avena seedlings phytochrome mRNA represents ∼0.1% of the total poly(A)+ RNA. Irradiation of such seedlings with a saturating red-light pulse or continuous white light induces a decline in this mRNA that is detectable within 30 min and results in a 50% reduction by ∼60 min and >90% reduction within 5 h. The effect of the red-light pulse is reversed, approximately to the level of the far-red control, by an immediately subsequent far-red pulse. In seedlings maintained in extended darkness after the red-light pulse, the initial rapid decline in phytochrome mRNA level is followed by a slower reaccumulation such that 50–60% of the initial abundance is reached by 48 h. White-light grown seedlings transferred to darkness exhibit a similar accumulation of phytochrome mRNA that is accelerated by removal of residual Pfr with a far-red light pulse at the start of the dark period. The data establish that previously reported phytochrome-regulated changes in translatable phytochrome mRNA levels result from changes in the physical abundance of this mRNA rather than from altered translatability.


Molecular Genetics and Genomics | 1989

Isolation and characterization of a maize chlorophyll a/b binding protein gene that produces high levels of mRNA in the dark.

Thomas D. Sullivan; Alan H. Christensen; Peter H. Quail

SummaryA cDNA libary prepared using mRNA isolated from red-light irradiated maize seedlings was screened by a difference procedure for clones that represent red-light regulated mRNA. Two such clones were found to represent mRNA for a chlorophyll a/b binding protein (CAB), and one of these (pAB1084) was used to screen a maize genomic library. One positive genomic clone (λAB1084) was isolated and sequenced. The gene represented by λAB1084, which we designate maize cab-1, contains extensive nucleotide homology within its protein coding region to CAB genes from other species. The boundaries of the transcribed region of the cab-1 gene were determined by S1 nuclease mapping. The 5′ terminus of cab-1 mRNA is located 52–54 nucleotides (nt) upstream of the translation start site and 34 nt downstream of a TATA box. As in the case of petunia CAB genes, several poly(A) addition sites are present in mRNA from the cab-1 gene. The 5′ flanking DNA of cab-1 contains sequences related to elements that have been implicated in the light-regulated expression of CAB and rccS genes in other plant systems. Quantitative Northern blot hybridization analysis using a gene specific probe for cab-1 indicates that the mRNA for this gene is present at 0.4% of the total mRNA and up to 80% of the total CAB mRNA in the leaves of dark-grown seedlings. In consequence, although the degree of up-regulation by white light is only moderate (3- to 6-fold), cab-1 transcripts account for approximately 2% of the mRNA in the leaves of light-grown seedlings.


Planta | 1984

Native phytochrome: immunoblot analysis of relative molecular mass and in-vitro proteolytic degradation for several plant species.

Richard D. Vierstra; Marie-Michèle Cordonnier; Lee H. Pratt; Peter H. Quail

The relative molecular mass (Mr) of the native phytochrome monomer from etiolated Cucurbita pepo L., Pisum sativum L., Secale cereale L. and Zea mays L. seedlings has been determined using immunoblotting to visualize the chromoprotein in crude extracts subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single phytochrome band is observed for each plant species when the molecule is extracted under conditions previously demonstrated to inhibit the proteolysis of native Avena sativa L. phytochrome. A comparison among plant species indicates that the Mr of native phytochrome is variable: Zea mays=127000; Secale=Avena=124000; Pisum=121000; Cucurbita=120000. The in-vitro phototransformation difference spectrum for native phytochrome from each species is similar to that observed in vivo in each case and is indistinguishable from that described for native Avena phytochrome. The difference minima between the red- and far-red-absorbing forms of the pigment (Pr-Pfr) are all at 730 nm and the spectral change ratios (ΔAr/ΔAfr) are near unity. When incubated in crude extracts, phytochrome from all four species is susceptible to Pr-specific limited proteolysis in a manner qualitatively similar to that observed for Avena phytochrome, albeit with slower rates and with the production of different Mr degradation products. Further examination of the in-vitro proteolysis of Avena phytochrome by endogeneous proteases has identified several additional phytochrome degradation products and permitted construction of a peptide map of the molecule. The results indicate that both the 6000- and 4000-Mr polypeptide segments cleaved by Pr-specific proteolysis are located at the NH2-terminus of the chromoprotein and are adjacent to a 64000-Mr polypeptide that contains the chromophore.


Plant Molecular Biology | 1987

Cloning of cDNA for phytochrome from etiolated Cucurbita and coordinate photoregulation of the abundance of two distinct phytochrome transcripts

James L. Lissemore; James T. Colbert; Peter H. Quail

We have isolated several cDNA clones for phytochrome from a dicot, Cucurbita pepo L. cv. Black Beauty (zucchini), and have used them to study the regulation of Cucurbita phytochrome mRNA levels. A cDNA library was constructed from poly(A)+ RNA isolated from etiolated Cucurbita hypocotyl hooks and enriched for phytochrome mRNA by size fractionation. This library was screened with a 32P-labeled fragment isolated from an Avena phytochrome cDNA clone. Several putative phytochrome clones were isolated and mapped by restriction endonuclease analysis. On the basis of this analysis there is no evidence for the expression of multiple phytochrome genes in Cucurbita. Recent sequence analysis has confirmed that the largest of these clones, pFMD1 (∼3.6 kb), does indeed encode phytochrome and that it contains the entire amino acid coding sequence for Cucurbita phytochrome (33). RNA blot analysis has revealed that two polyadenylated phytochrome transcripts (∼5.6 kb and ∼4.2 kb) are present in both cotyledons and hypocotyl hooks of Cucurbita. In etiolated Cucurbita seedlings given a saturating pulse of red light, the abundance of both transcripts coordinately declines to 50–60% of the dark levels within 3 h and reaccumulates to dark levels within 24 h. Reversal of induction of this response by a far-red light pulse immediately following red light treatment is not observed, which is in contrast to the far-red reversibility of the red light promoted decrease in phytochrome mRNA abundance observed in Avena (6). Etiolated seedlings transferred to continuous white light also show a coordinate decrease in the levels of the two RNAs to ∼40% of the dark levels within 3 h. The magnitude of the light-induced decline in phytochrome mRNA abundance in Cucurbita is substantially less than the decrease previously reported for Avena (6).


Planta | 1982

Proteolysis alters the spectral properties of 124 kdalton phytochrome from Avena

Richard D. Vierstra; Peter H. Quail

Native phytochrome from Avena sativa L. is homogeneous with a monomeric molecular weight of 124 kdalton; 6–10 kdalton larger than the heterogeneous “120” kdalton preparations previously considered to be undegraded (Vierstra and Quail, 1982, Proc. Natl. Acad. Sci. USA, 79: 5272–5276). The phototransformation difference spectrum (Pr-Pfr) of 124 kdalton phytochrome measured in crude extracts has a minimum in the farred region at 730 nm, the same as that observed in vivo. These spectral properties contrast with those of “120” kdalton phytochrome purified by column immunoaffinity chromatography where the difference minimum is at 724 nm. When 124 kdalton phytochrome is incubated as Pr in crude extracts, the difference minimum shifts progressively to shorter wavelengths (from 730 to 722 nm) concomitant with the proteolytic degradation of the chromoprotein to the mixture of 118 and 114 kdalton species that comprise “120” kdalton phytochrome preparations. These two effects are inhibited in concert by the serine protease inhibitor, phenylmethylsulfonylfluoride, and or maintenance of the phytochrome in the Pfr form. These results provide further evidence that 124 kdalton phytochrome is the native molecule in Avena and indicate that the peptide segments removed by proteolysis of the Pr form are important to the pigments spectral integrity. The present data thus resolve the previously unsettled question of why the Pfr form of “120” kdalton phytochrome isolated by various procedures from Avena has been found to absorb at shorter wavelengths than that observed in vivo. Previous spectral studies with “120” kdalton phytochrome preparations are open to reexamination.


Planta | 1985

The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L.

A. M. Jones; Richard D. Vierstra; S. M. Daniels; Peter H. Quail

The spectral properties of peptides generated from etiolated-Avana, 124-kDa (kilodalton) phytochrome by endogenous protease(s) have been studied to assess the role of the amino-terminal and the carboxyl-terminal domains in maintaining the proper interaction between protein and chromophore. The amino-terminal, 74-kDa chromopeptide, a degradation product of the far-red absorbing form of the pigment (Pfr), is shown to be spectrally similar to the 124-kDa, undegraded molecule. The minimum and maximum of the difference spectrum (Pr-Pfr) are 730 and 665 nm, respectively, and the spectral-change ratio is unity. Also, like undegraded, 124-kDa phytochrome, the 74-kDa peptide exhibits minimal dark reversion. These data indicate that the 55-kDa, carboxyl-terminal half of the polypeptide does not interact with the chromophore and may not have a role in the structureal integrity of the amino-terminal domain. The 64-kDa chromopeptide can be generated directly from the 74-kDa species by cleavage of 10 kDa from the amino terminus upon incubation of this species as Pr. Accompanying this conversion are changes in the spectral properties, namely, a shift in the difference spectrum minimum to 722–724 nm and a tenfold increase in the capacity for dark reversion. These data indicate that the 6–10 kDa, amino-terminal segment continues to function in its role of maintaining proper chromophore-protein interactions in the 74-kDa peptide as it does in the undegraded molecule. Conversely, removal of this segment upon proteolysis to the 63-kDa species leads to aberrant spectral properties analogous to those observed when this domain is lost from the full-length, 124-kDa molecule, resulting in the 118/114-kDa degradation products. The data also show that photoconversion of the 74-kDa chromopeptide from Pfr to Pr exposes proteolytically susceptible sites in the same way as in the 124-kDa molecule. Thus, the separated, 74-kDa amino-terminal domain undergoes a photoinducible conformational change comparable to that in the intact molecule.

Collaboration


Dive into the Peter H. Quail's collaboration.

Top Co-Authors

Avatar

Howard P. Hershey

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard D. Vierstra

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas D. Sullivan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan M. Jones

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James G. Tokuhisa

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James L. Lissemore

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

A. M. Jones

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge