Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mala Chakraborty is active.

Publication


Featured researches published by Mala Chakraborty.


Journal of Experimental Medicine | 2006

Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy.

Eric Reits; James W. Hodge; Carla Herberts; Tom A. Groothuis; Mala Chakraborty; Elizabeth K. Wansley; Kevin Camphausen; Rosalie M. Luiten; Arnold H. de Ru; Joost Neijssen; Alexander Griekspoor; Elly Mesman; Frank A. W. Verreck; Hergen Spits; Jeffrey Schlom; Peter A. van Veelen; Jacques Neefjes

Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to γ-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy.


Cancer Research | 2004

External Beam Radiation of Tumors Alters Phenotype of Tumor Cells to Render Them Susceptible to Vaccine-Mediated T-Cell Killing

Mala Chakraborty; Scott I. Abrams; C. Norman Coleman; Kevin Camphausen; Jeffrey Schlom; James W. Hodge

Local radiation is an established therapy for human tumors. Radiation also has been shown to alter the phenotype of target tissue, including gene products that may make tumor cells more susceptible to T-cell-mediated immune attack. We demonstrate a biological synergy between local radiation of tumor and active vaccine therapy. The model used consisted of mice transgenic for human carcinoembryonic antigen (CEA) and a murine carcinoma cell line transfected with CEA. The vaccine regimen consisted of a prime and boost strategy using vaccinia and avipox recombinants expressing CEA and three T-cell costimulatory molecules. One dose of 8-Gy radiation to tumor induced up-regulation of the death receptor Fas in situ for up to 11 days. However, neither radiation at this dose nor vaccine therapy was capable of inhibiting growth of 8-day established tumor. When vaccine therapy and local radiation of tumor were used in combination, dramatic and significant cures were achieved. This was mediated by the engagement of the Fas/Fas ligand pathway because Ag-bearing tumor cells expressing dominant-negative Fas were not susceptible to this combination therapy. Following the combination of vaccine and local radiation, tumors demonstrated a massive infiltration of T cells not seen with either modality alone. Mice cured of tumors demonstrated CD4+ and CD8+ T-cell responses specific for CEA but also revealed the induction of high levels of T-cell responses to two other antigens (gp70 and p53) overexpressed in tumor, indicating the presence of a consequential antigen cascade. Thus, these studies demonstrate a new paradigm for the use of local tumor irradiation in combination with active specific vaccine therapy to elicit durable antitumor responses of established tumors.


Journal of Immunology | 2003

Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy

Mala Chakraborty; Scott I. Abrams; Kevin Camphausen; Kebin Liu; Tamalee Scott; C. Norman Coleman; James W. Hodge

CD8+ CTL play important roles against malignancy in both active and passive immunotherapy. Nonetheless, the success of antitumor CTL responses may be improved by additional therapeutic modalities. Radiotherapy, which has a long-standing use in treating neoplastic disease, has been found to induce unique biologic alterations in cancer cells affecting Fas gene expression, which, consequently, may influence the overall lytic efficiency of CTL. Here, in a mouse adenocarcinoma cell model, we examined whether exposure of these tumor cells to sublethal doses of irradiation 1) enhances Fas expression, leading to more efficient CTL killing via Fas-dependent mechanisms in vitro; and 2) improves antitumor activity in vivo by adoptive transfer of these Ag-specific CTL. Treatment of carcinoembryonic Ag-expressing MC38 adenocarcinoma cells with irradiation (20 Gy) in vitro enhanced Fas expression at molecular, phenotypic, and functional levels. Furthermore, irradiation sensitized these targets to Ag-specific CTL killing via the Fas/Fas ligand pathway. We examined the effect of localized irradiation of s.c. growing tumors on the efficiency of CTL adoptive immunotherapy. Irradiation caused up-regulation of Fas by these tumor cells in situ, based on immunohistochemistry. Moreover, localized irradiation of the tumor significantly potentiated tumor rejection by these carcinoembryonic Ag-specific CTL. Overall, these results showed for the first time that 1) regulation of the Fas pathway in tumor cells by irradiation plays an important role in their sensitization to Ag-specific CTL; and 2) a combination regimen of tumor-targeted irradiation and CTL promotes more effective antitumor responses in vivo, which may have implications for the combination of immunotherapy and radiation therapy.


Journal of Immunology | 2005

Multiple costimulatory modalities enhance CTL avidity

James W. Hodge; Mala Chakraborty; Chie Kudo-Saito; Charlie T. Garnett; Jeffrey Schlom

Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. In this study, we evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8+ T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using β-galactosidase as immunogen, and in a “self” Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. The results reported in this study thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.


Clinical Cancer Research | 2008

Vaccination with a Recombinant Saccharomyces cerevisiae Expressing a Tumor Antigen Breaks Immune Tolerance and Elicits Therapeutic Antitumor Responses

Elizabeth K. Wansley; Mala Chakraborty; Kenneth W. Hance; Michael B. Bernstein; Amanda L. Boehm; Zhimin Guo; Deborah Quick; Alex Franzusoff; John W. Greiner; Jeffrey Schlom; James W. Hodge

Purpose:Saccharomyces cerevisiae, a nonpathogenic yeast, has been used previously as a vehicle to elicit immune responses to foreign antigens, and tumor-associated antigens, and has been shown to reduce tumor burden in mice. Studies were designed to determine if vaccination of human carcinoembryonic antigen (CEA)-transgenic (CEA-Tg) mice (where CEA is a self-antigen) with a recombinant S. cerevisiae construct expressing human CEA (yeast-CEA) elicits CEA-specific T-cell responses and antitumor activity. Experimental Design: CEA-Tg mice were vaccinated with yeast-CEA, and CD4+ and CD8+ T-cell responses were assessed after one and multiple administrations or vaccinations at multiple sites per administration. Antitumor activity was determined by tumor growth and overall survival in both pulmonary metastasis and s.c. pancreatic tumor models. Results: These studies demonstrate that recombinant yeast can break tolerance and that (a) yeast-CEA constructs elicit both CEA-specific CD4+ and CD8+ T-cell responses; (b) repeated yeast-CEA administration causes increased antigen-specific T-cell responses after each vaccination; (c) vaccination with yeast-CEA at multiple sites induces a greater T-cell response than the same dose given at a single site; and (d) tumor-bearing mice vaccinated with yeast-CEA show a reduction in tumor burden and increased overall survival compared to mock-treated or control yeast-vaccinated mice in both pulmonary metastasis and s.c. pancreatic tumor models. Conclusions: Vaccination with a heat-killed recombinant yeast expressing the tumor-associated antigen CEA induces CEA-specific immune responses, reduces tumor burden, and extends overall survival in CEA-Tg mice. These studies thus form the rationale for the incorporation of recombinant yeast-CEA and other recombinant yeast constructs in cancer immunotherapy protocols.


Clinical Cancer Research | 2008

The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing.

Mala Chakraborty; Elizabeth K. Wansley; Jorge A. Carrasquillo; Sarah Yu; Chang H. Paik; Kevin Camphausen; Michael Becker; William F. Goeckeler; Jeffrey Schlom; James W. Hodge

Purpose: Exposing human tumor cells to sublethal doses of external beam radiation up-regulates expression of tumor antigen and accessory molecules, rendering tumor cells more susceptible to killing by antigen-specific CTLs. This study explored the possibility that exposure to palliative doses of a radiopharmaceutical agent could alter the phenotype of tumor cells to render them more susceptible to T cell–mediated killing. Experimental Design: Here, 10 human tumor cell lines (4 prostate, 2 breast, and 4 lung) were exposed to increasing doses of the radiopharmaceutical samarium-153-ethylenediaminetetramethylenephosphonate (153Sm-EDTMP) used in cancer patients to treat pain due to bone metastasis. Fluorescence-activated cell sorting analysis and quantitative real-time PCR analysis for expression of five surface molecules and several tumor-associated antigens involved in prostate cancer were done. LNCaP human prostate cancer cells were exposed to 153Sm-EDTMP and incubated with tumor-associated antigen-specific CTL in a CTL killing assay to determine whether exposure to 153Sm-EDTMP rendered LNCaP cells more susceptible to T cell–mediated killing. Results: Tumor cells up-regulated the surface molecules Fas (100% of cell lines up-regulated Fas), carcinoembryonic antigen (90%), mucin-1 (60%), MHC class I (50%), and intercellular adhesion molecule-1 (40%) in response to 153Sm-EDTMP. Quantitative real-time PCR analysis revealed additional up-regulated tumor antigens. Exposure to 153Sm-EDTMP rendered LNCaP cells more susceptible to killing by CTLs specific for prostate-specific antigen, carcinoembryonic antigen, and mucin-1. Conclusions: Doses of 153Sm-EDTMP equivalent to palliative doses delivered to bone alter the phenotype of tumor cells, suggesting that 153Sm-EDTMP may work synergistically with immunotherapy to increase the susceptibility of tumor cells to CTL killing.


Cancer Immunology, Immunotherapy | 2007

The combined activation of positive costimulatory signals with modulation of a negative costimulatory signal for the enhancement of vaccine-mediated T-cell responses

Mala Chakraborty; Jeffrey Schlom; James W. Hodge

Blockade of CTLA-4 by monoclonal antibodies (mAb) can mediate regression of tumors and increase the efficacy of tumor antigen specific vaccines. Blockade of CTLA-4 has also been shown to significantly increase the avidity of antigen-specific T cells after immunization with live recombinant viral vector based vaccine. Here, we demonstrate a biological synergy between CTLA-4 blockade and active vaccine therapy consisting of recombinant vaccinia and avipox viruses expressing carcinoembryonic antigen (CEA) and three T cell costimulatory molecules to enhance antitumor effects. However, this synergy was very much dependent on the temporal relationship of scheduling of the two agents. We evaluated the strategies in both a foreign antigen model using β-galactosidase as immunogen, and in a “self” antigen model using CEA as immunogen. For antitumor activity the model used consisted of mice transgenic for human CEA and a murine carcinoma cell line transfected with CEA. The enhanced antitumor activity after vaccine and CTLA-4 blockade did not result in any signs of autoimmunity. These studies form a rational basis for the use of vector-based vaccines with anti-CTLA-4 and demonstrate that both enhancement of positive costimulatory signals and inhibition of negative costimulatory signals can be simultaneously exploited. These studies also underscore the importance of “drug” scheduling in vaccine combination therapies.


Cancer Immunology, Immunotherapy | 2008

Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects

Mala Chakraborty; Alexander Gelbard; Jorge A. Carrasquillo; Sarah Yu; Marcelo Mamede; Chang H. Paik; Kevin Camphausen; Jeffrey Schlom; James W. Hodge

Radiolabeled monoclonal antibodies (mAb) have demonstrated measurable antitumor effects in hematologic malignancies. This outcome has been more difficult to achieve for solid tumors due, for the most part, to difficulties in delivering sufficient quantities of mAb to the tumor mass. Previous studies have shown that nonlytic levels of external beam radiation can render tumor cells more susceptible to T cell-mediated killing. The goal of these studies was to determine if the selective delivery of a radiolabeled mAb to tumors would modulate tumor cell phenotype so as to enhance vaccine-mediated T-cell killing. Here, mice transgenic for human carcinoembryonic antigen (CEA) were transplanted with a CEA expressing murine carcinoma cell line. Radioimmunotherapy consisted of yttrium-90 (Y-90)-labeled anti-CEA mAb, used either alone or in combination with vaccine therapy. A single dose of Y-90-labeled anti-CEA mAb, in combination with vaccine therapy, resulted in a statistically significant increase in survival in tumor-bearing mice over vaccine or mAb alone; this was shown to be mediated by engagement of the Fas/Fas ligand pathway. Mice receiving the combination therapy also showed a significant increase in the percentage of viable tumor-infiltrating CEA-specific CD8+ T cells compared to vaccine alone. Mice cured of tumors demonstrated an antigen cascade resulting in CD4+ and CD8+ T-cell responses not only for CEA, but for p53 and gp70. These results show that systemic radiotherapy in the form of radiolabeled mAb, in combination with vaccine, promotes effective antitumor response, which may have implications in the design of future clinical trials.


Biochemical and Biophysical Research Communications | 2008

Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury.

Mohammed Bourdi; Midhun C. Korrapati; Mala Chakraborty; Steven B. Yee; Lance R. Pohl

Recent studies in mice suggest that stress-activated c-Jun N-terminal protein kinase 2 (JNK2) plays a pathologic role in acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure (ALF). In contrast, we present evidence that JNK2 can have a protective role against AILI. When male C57BL/6J wild type (WT) and JNK2(-/-) mice were treated with 300mg APAP/kg, 90% of JNK2(-/-) mice died of ALF compared to 20% of WT mice within 48h. The high susceptibility of JNK2(-/-) mice to AILI appears to be due in part to deficiencies in hepatocyte proliferation and repair. Therefore, our findings are consistent with JNK2 signaling playing a protective role in AILI and further suggest that the use of JNK inhibitors as a potential treatment for AILI, as has been recommended by other investigators, should be reconsidered.


Chemical Research in Toxicology | 2012

Endogenous interleukin-4 regulates glutathione synthesis following acetaminophen-induced liver injury in mice.

Pauline M. Ryan; Mohammed Bourdi; Midhun C. Korrapati; William R. Proctor; Ronald A. Vasquez; Steven B. Yee; Timothy D. Quinn; Mala Chakraborty; Lance R. Pohl

In a recent study, we reported that interleukin (IL)-4 had a protective role against acetaminophen (APAP)-induced liver injury (AILI), although the mechanism of protection was unclear. Here, we carried out more detailed investigations and have shown that one way IL-4 may control the severity of AILI is by regulating glutathione (GSH) synthesis. In the present studies, the protective role of IL-4 in AILI was established definitively by showing that C57BL/6J mice made deficient in IL-4 genetically (IL-4(-/-)) or by depletion with an antibody, were more susceptible to AILI than mice not depleted of IL-4. The increased susceptibility of IL-4(-/-) mice was not due to elevated levels of hepatic APAP-protein adducts but was associated with a prolonged reduction in hepatic GSH that was attributed to decreased gene expression of γ-glutamylcysteine ligase (γ-GCL). Moreover, administration of recombinant IL-4 to IL-4(-/-) mice postacetaminophen treatment diminished the severity of liver injury and increased γ-GCL and GSH levels. We also report that the prolonged reduction of GSH in APAP-treated IL-4(-/-) mice appeared to contribute toward increased liver injury by causing a sustained activation of c-Jun-N-terminal kinase (JNK) since levels of phosphorylated JNK remained significantly higher in the IL-4(-/-) mice up to 24 h after APAP treatment. Overall, these results show for the first time that IL-4 has a role in regulating the synthesis of GSH in the liver under conditions of cellular stress. This mechanism appears to be responsible at least in part for the protective role of IL-4 against AILI in mice and may have a similar role not only in AILI in humans but also in pathologies of the liver caused by other drugs and etiologies.

Collaboration


Dive into the Mala Chakraborty's collaboration.

Top Co-Authors

Avatar

Jeffrey Schlom

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James W. Hodge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kevin Camphausen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth K. Wansley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lance R. Pohl

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mohammed Bourdi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charlie T. Garnett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jorge A. Carrasquillo

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sarah Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William R. Proctor

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge