Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamey D. Young is active.

Publication


Featured researches published by Jamey D. Young.


Metabolic Engineering | 2011

Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis

Jamey D. Young; Avantika A. Shastri; Gregory Stephanopoulos; John A. Morgan

Understanding in vivo regulation of photoautotrophic metabolism is important for identifying strategies to improve photosynthetic efficiency or re-route carbon fluxes to desirable end products. We have developed an approach to reconstruct comprehensive flux maps of photoautotrophic metabolism by computational analysis of dynamic isotope labeling measurements and have applied it to determine metabolic pathway fluxes in the cyanobacterium Synechocystis sp. PCC6803. Comparison to a theoretically predicted flux map revealed inefficiencies in photosynthesis due to oxidative pentose phosphate pathway and malic enzyme activity, despite negligible photorespiration. This approach has potential to fill important gaps in our understanding of how carbon and energy flows are systemically regulated in cyanobacteria, plants, and algae.


Current Opinion in Biotechnology | 2015

A roadmap for interpreting (13)C metabolite labeling patterns from cells.

Joerg Martin Buescher; Maciek R. Antoniewicz; Laszlo G. Boros; Shawn C. Burgess; Henri Brunengraber; Clary B. Clish; Ralph J. DeBerardinis; Olivier Feron; Christian Frezza; Bart Ghesquière; Eyal Gottlieb; Karsten Hiller; Russell G. Jones; Jurre J. Kamphorst; Richard G. Kibbey; Alec C. Kimmelman; Jason W. Locasale; Sophia Y. Lunt; Oliver Dk Maddocks; Craig R. Malloy; Christian M. Metallo; Emmanuelle J. Meuillet; Joshua Munger; Katharina Nöh; Joshua D. Rabinowitz; Markus Ralser; Uwe Sauer; Gregory Stephanopoulos; Julie St-Pierre; Daniel A. Tennant

Measuring intracellular metabolism has increasingly led to important insights in biomedical research. (13)C tracer analysis, although less information-rich than quantitative (13)C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting (13)C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments.


Progress in Lipid Research | 2013

Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease

Alexandra K. Leamy; Robert A. Egnatchik; Jamey D. Young

The steady rise in Western obesity rates has been closely linked to significant increases in a multitude of accompanying health problems including non-alcoholic fatty liver disease (NAFLD). NAFLD severity ranges from simple steatosis to acute steatohepatitis, but the molecular mechanisms controlling progression of this disease are poorly understood. Recent literature suggests that elevated free fatty acids (FFAs), especially saturated FFAs, may play an important role in lipotoxic mechanisms, both in experimental models and in NAFLD patients. This review highlights important cellular pathways involved in hepatic lipotoxicity and how the degree of intrahepatic lipid saturation controls cell fate in response to an elevated FFA load. Relevant cellular processes that have been causally linked to lipid-induced apoptosis, known as lipoapoptosis, include endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial dysfunction, and Jun N-terminal kinase (JNK) signaling. In contrast, increased triglyceride synthesis has been shown to have a protective effect against lipotoxicity, despite being one of the hallmark traits of NAFLD. Developing a more nuanced understanding of the molecular mechanisms underlying NAFLD progression will lead to more targeted and effective therapeutics for this increasingly prevalent disease, which to date has no proven pharmacologic treatment to prevent or reverse its course.


Bioinformatics | 2014

INCA: a computational platform for isotopically non-stationary metabolic flux analysis

Jamey D. Young

13C flux analysis studies have become an essential component of metabolic engineering research. The scope of these studies has gradually expanded to include both isotopically steady-state and transient labeling experiments, the latter of which are uniquely applicable to photosynthetic organisms and slow-to-label mammalian cell cultures. Isotopomer network compartmental analysis (INCA) is the first publicly available software package that can perform both steady-state metabolic flux analysis and isotopically non-stationary metabolic flux analysis. The software provides a framework for comprehensive analysis of metabolic networks using mass balances and elementary metabolite unit balances. The generation of balance equations and their computational solution is completely automated and can be performed on networks of arbitrary complexity.


Biotechnology and Bioengineering | 2013

Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed‐batch CHO cell culture

Neil Templeton; Jason Dean; Pranhitha Reddy; Jamey D. Young

Cell metabolism can vary considerably over the course of a typical fed‐batch antibody production process. However, the intracellular pathway alterations associated with various phases of growth and antibody production have yet to be fully elucidated using industrially relevant production hosts. Therefore, we performed 13C labeling experiments and metabolic flux analysis (MFA) to characterize CHO cell metabolism during four separate phases of a fed‐batch culture designed to closely represent industrial process conditions. First, we found that peak specific growth rate was associated with high lactate production and minimal TCA cycling. Conversely, we found that lactate metabolism switched from net production to net consumption as the culture transitioned from peak growth to peak antibody production. During the peak antibody production phase, energy was primarily generated through oxidative phosphorylation, which was also associated with elevated oxidative pentose phosphate pathway (oxPPP) activity. Interestingly, as TCA cycling and antibody production reached their peaks, specific growth rate continued to diminish as the culture entered stationary phase. However, TCA cycling and oxPPP activity remained high even as viable cell density began to decline. Overall, we found that a highly oxidative state of metabolism corresponded with peak antibody production, whereas peak cell growth was characterized by a highly glycolytic metabolic state. Biotechnol. Bioeng. 2013; 110: 2013–2024.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

Fangfang Ma; Lara J. Jazmin; Jamey D. Young; Doug K. Allen

Significance To our knowledge, this is the first time that isotopically nonstationary 13C flux analysis has been successfully applied to map photoautotrophic fluxes in a terrestrial plant system. Our analysis reveals alterations in photosynthetic carbon flux in response to high light acclimation. We provide a quantitative description of metabolism that accommodates acclimation and estimates changes in important fluxes that are difficult to measure. This study demonstrates a comprehensive approach to map the flow and fate of carbon within plant metabolic networks. Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has been previously applied to map carbon fluxes in photoautotrophic bacteria, which involves model-based regression of transient 13C-labeling patterns of intracellular metabolites. However, experimental and computational difficulties have hindered its application to terrestrial plant systems. We performed in vivo isotopic labeling of Arabidopsis thaliana rosettes with 13CO2 and estimated fluxes throughout leaf photosynthetic metabolism by INST-MFA. Plants grown at 200 µmol m-2s−1 light were compared with plants acclimated for 9 d at an irradiance of 500 µmol⋅m−2⋅s−1. Approximately 1,400 independent mass isotopomer measurements obtained from analysis of 37 metabolite fragment ions were regressed to estimate 136 total fluxes (54 free fluxes) under each condition. The results provide a comprehensive description of changes in carbon partitioning and overall photosynthetic flux after long-term developmental acclimation of leaves to high light. Despite a doubling in the carboxylation rate, the photorespiratory flux increased from 17 to 28% of net CO2 assimilation with high-light acclimation (Vc/Vo: 3.5:1 vs. 2.3:1, respectively). This study highlights the potential of 13C INST-MFA to describe emergent flux phenotypes that respond to environmental conditions or plant physiology and cannot be obtained by other complementary approaches.


Biotechnology and Bioengineering | 2008

Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control

Jamey D. Young; Kristene L. Henne; John A. Morgan; Allan Konopka; Doraiswami Ramkrishna

Cybernetic modeling strives to uncover the inbuilt regulatory programs of biological systems and leverage them toward computational prediction of metabolic dynamics. Because of its focus on incorporating the global aims of metabolism, cybernetic modeling provides a systems‐oriented approach for describing regulatory inputs and inferring the impact of regulation within biochemical networks. Combining cybernetic control laws with concepts from metabolic pathway analysis has culminated in a systematic strategy for constructing cybernetic models, which was previously lacking. The newly devised framework relies upon the simultaneous application of local controls that maximize the net flux through each elementary flux mode and global controls that modulate the activities of these modes to optimize the overall nutritional state of the cell. The modeling concepts are illustrated using a simple linear pathway and a larger network representing anaerobic E. coli central metabolism. The E. coli model successfully describes the metabolic shift that occurs upon deleting the pta‐ackA operon that is responsible for fermentative acetate production. The model also furnishes predictions that are consistent with experimental results obtained from additional knockout strains as well as strains expressing heterologous genes. Because of the stabilizing influence of the included control variables, the resulting cybernetic models are more robust and reliable than their predecessors in simulating the network response to imposed genetic and environmental perturbations. Biotechnol. Bioeng. 2008;100: 542–559.


Metabolic Engineering | 2013

Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells

Taylor A. Murphy; Chi V. Dang; Jamey D. Young

We assessed several methods of (13)C metabolic flux analysis (MFA) and found that isotopically nonstationary MFA achieved maximum flux resolution in cultured P493-6 B-cells, which have been engineered to provide tunable expression of the Myc oncoprotein. Comparison of metabolic flux maps obtained under oncogenic (High) and endogenous (Low) Myc expression levels revealed network-wide reprogramming in response to ectopic Myc expression. High Myc cells relied more heavily on mitochondrial oxidative metabolism than Low Myc cells and globally upregulated their consumption of amino acids relative to glucose. TCA cycle and amphibolic mitochondrial pathways exhibited 2- to 4-fold flux increases in High Myc cells, in contrast to modest increases in glucose uptake and lactate excretion. Because our MFA approach relied exclusively upon isotopic measurements of protein-bound amino acids and RNA-bound ribose, it is readily applicable to more complex tumor models that are not amenable to direct extraction and isotopic analysis of free intracellular metabolites.


Journal of Biological Chemistry | 2009

Effect of Anaplerotic Fluxes and Amino Acid Availability on Hepatic Lipoapoptosis

Yasushi Noguchi; Jamey D. Young; Jose O. Aleman; Michael Adsetts Edberg Hansen; Joanne K. Kelleher; Gregory Stephanopoulos

To identify metabolic pathways involved in hepatic lipoapoptosis, metabolic flux analysis using [U-13C5]glutamine as an isotopic tracer was applied to quantify phenotypic changes in H4IIEC3 hepatoma cells treated with either palmitate alone (PA-cells) or both palmitate and oleate in combination (PA/OA-cells). Our results indicate that palmitate inhibited glycolysis and lactate dehydrogenase fluxes while activating citric acid cycle (CAC) flux and glutamine uptake. This decoupling of glycolysis and CAC fluxes occurred during the period following palmitate exposure but preceding the onset of apoptosis. Oleate co-treatment restored most fluxes to their control levels, resulting in steatotic lipid accumulation while preventing apoptosis. In addition, palmitate strongly increased the cytosolic NAD+/NADH ratio, whereas oleate co-treatment had the opposite effect on cellular redox. We next examined the influence of amino acids on these free fatty acid-induced phenotypic changes. Increased medium amino acids enhanced reactive oxygen species (ROS) generation and apoptosis in PA-cells but not in PA/OA-cells. Overloading the medium with non-essential amino acids induced apoptosis, but essential amino acid overloading partially ameliorated apoptosis. Glutamate was the most effective single amino acid in promoting ROS. Amino acid overloading also increased cellular palmitoyl-ceramide; however, ceramide synthesis inhibitors had no effect on measurable indicators of apoptosis. Our results indicate that free fatty acid-induced ROS generation and apoptosis are accompanied by the decoupling of glycolysis and CAC fluxes leading to abnormal cytosolic redox states. Amino acids play a modulatory role in these processes via a mechanism that does not involve ceramide accumulation.


Metabolism-clinical and Experimental | 2014

Palmitate-induced activation of mitochondrial metabolism promotes oxidative stress and apoptosis in H4IIEC3 rat hepatocytes.

Robert A. Egnatchik; Alexandra K. Leamy; Yasushi Noguchi; Masakazu Shiota; Jamey D. Young

OBJECTIVE Hepatic lipotoxicity is characterized by reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and excessive apoptosis, but the precise sequence of biochemical events leading to oxidative damage and cell death remains unclear. The goal of this study was to delineate the role of mitochondrial metabolism in mediating hepatocyte lipotoxicity. MATERIALS/METHODS We treated H4IIEC3 rat hepatoma cells with free fatty acids in combination with antioxidants and mitochondrial inhibitors designed to block key events in the progression toward apoptosis. We then applied (13)C metabolic flux analysis (MFA) to quantify mitochondrial pathway alterations associated with these treatments. RESULTS Treatment with palmitate alone led to a doubling in oxygen uptake rate and in most mitochondrial fluxes. Supplementing culture media with the antioxidant N-acetyl-cysteine (NAC) reduced ROS accumulation and caspase activation and partially restored cell viability. However, (13)C MFA revealed that treatment with NAC did not normalize palmitate-induced metabolic alterations, indicating that neither elevated ROS nor downstream apoptotic events contributed to mitochondrial activation. To directly limit mitochondrial metabolism, the complex I inhibitor phenformin was added to cells treated with palmitate. Phenformin addition eliminated abnormal ROS accumulation, prevented the appearance of apoptotic markers, and normalized mitochondrial carbon flow. Further studies revealed that glutamine provided the primary fuel for elevated mitochondrial metabolism in the presence of palmitate, rather than fatty acid beta-oxidation, and that glutamine consumption could be reduced through co-treatment with phenformin but not NAC. CONCLUSION Our results indicate that ROS accumulation in palmitate-treated H4IIEC3 cells occurs downstream of altered mitochondrial oxidative metabolism, which is independent of beta-oxidation and precedes apoptosis initiation.

Collaboration


Dive into the Jamey D. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Stephanopoulos

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge