Jamey Mack
Argonne National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jamey Mack.
Chemical Biology & Drug Design | 2007
Jeffrey R. Huth; Chang Park; Andrew M. Petros; Aaron R. Kunzer; Michael D. Wendt; Xilu Wang; Christopher L. Lynch; Jamey Mack; Kerry M. Swift; Russell A. Judge; Jun Chen; Paul L. Richardson; Sha Jin; Stephen K. Tahir; Edward D. Matayoshi; Sarah A. Dorwin; Uri S. Ladror; Jean M. Severin; Karl A. Walter; Diane Bartley; Stephen W. Fesik; Steven W. Elmore; Philip J. Hajduk
The molecular chaperone HSP90 has been shown to facilitate cancer cell survival by stabilizing key proteins responsible for a malignant phenotype. We report here the results of parallel fragment‐based drug design approaches in the design of novel HSP90 inhibitors. Initial aminopyrimidine leads were elaborated using high‐throughput organic synthesis to yield nanomolar inhibitors of the enzyme. Second site leads were also identified which bound to HSP90 in two distinct conformations, an ‘open’ and ‘closed’ form. Intriguingly, linked fragment approaches targeting both of these conformations were successful in producing novel, micromolar inhibitors. Overall, this study shows that, with only a few fragment hits, multiple lead series can be generated for HSP90 due to the inherent flexibility of the active site. Thus, ample opportunities exist to use these lead series in the development of clinically useful HSP90 inhibitors for the treatment of cancers.
Bioorganic & Medicinal Chemistry Letters | 2010
Andrew M. Petros; Jeffrey R. Huth; Thorsten Oost; Cheol-Min Park; H. Ding; Xilu Wang; Haichao Zhang; Paul Nimmer; Renaldo Mendoza; Chaohong Sun; Jamey Mack; Karl A. Walter; Sarah A. Dorwin; Emily Gramling; Uri S. Ladror; Saul H. Rosenberg; Steven W. Elmore; Stephen W. Fesik; Philip J. Hajduk
The Bcl-2 family of proteins plays a major role in the regulation of apoptosis, or programmed cell death. Overexpression of the anti-apoptotic members of this family (Bcl-2, Bcl-x(L), and Mcl-1) can render cancer cells resistant to chemotherapeutic agents and therefore these proteins are important targets for the development of new anti-cancer agents. Here we describe the discovery of a potent, highly selective, Bcl-2 inhibitor using SAR by NMR and structure-based drug design which could serve as a starting point for the development of a Bcl-2 selective anti-cancer agent. Such an agent would potentially overcome the Bcl-x(L) mediated thrombocytopenia observed with ABT-263.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jeremy R. Lohman; Ming Ma; Jerzy Osipiuk; Boguslaw Nocek; Youngchang Kim; Changsoo Chang; Marianne E. Cuff; Jamey Mack; Lance Bigelow; Hui Li; Michael Endres; Gyorgy Babnigg; Andrzej Joachimiak; George N. Phillips; Ben Shen
Significance There are many differences in the sequences of ketosynthase (KS) domains from the well-studied type I polyketide synthases (PKSs) and the more recently discovered acyltransferase (AT)-less type I PKSs. The AT-less type I PKSs generate polyketides with a high degree of structural diversity, which stems from their evolution by horizontal gene transfer. In comparison, canonical type I PKSs evolve by gene duplication. The seven structures of AT-less type I PKS KSs reveal the molecular details surrounding the evolution of substrate specificity and structural diversity, and their overall differences with canonical type I PKS KSs. Understanding the mechanism of substrate specificity will allow reprogramming of the KS active sites to generate polyketide analogues by PKS and polyketide biosynthetic pathway engineering. Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.
Journal of Biomolecular Screening | 2002
Philip J. Hajduk; Stephen F. Betz; Jamey Mack; Xiaoan Ruan; Danli L. Towne; Claude G. Lerner; Bruce A. Beutel; Stephen W. Fesik
A strategy is described for the development of high-throughput screening assays against targets of unknown function that involves the use of nuclear magnetic resonance (NMR) spectroscopy. Using this approach, molecules that bind to the protein target are identified from an NMR-based screen of a library of substrates, cofactors, and other compounds that are known to bind to many proteins and enzymes. Once a ligand has been discovered, a fluorescent or radiolabeled analog of the ligand is synthesized that can be used in a high-throughput screen. The approach is illustrated in the development of a high-throughput screening assay against HI-0033, a conserved protein from Haemophilus influenzae whose function is currently unknown. Adenosine was found to bind to HI-0033 by NMR, and fluorescent analogs were rapidly identified that bound to HI-0033 in the submicromolar range. Using these fluorescent compounds, a fluorescence polarization assay was developed that is suitable for high-throughput screening and obtaining detailed structure-activity relationships for lead optimization.
Chemical Biology & Drug Design | 2007
Claude G. Lerner; Philip J. Hajduk; Rolf Wagner; Frank L. Wagenaar; Charlotte Woodall; Yu-Gui Gu; Xenia B. Searle; Alan S. Florjancic; Tianyuan Zhang; Richard F. Clark; Curt S. Cooper; Jamey Mack; Liping Yu; Mengli Cai; Steven F. Betz; Linda E. Chovan; J. Owen McCall; Candace Black-Schaefer; Stephan J. Kakavas; Mark E. Schurdak; Kenneth M. Comess; Karl A. Walter; Rohinton Edalji; Sarah A. Dorwin; Richard Smith; Eric J. Hebert; John E. Harlan; Randy E. Metzger; Philip J. Merta; John L. Baranowski
As part of a fully integrated and comprehensive strategy to discover novel antibacterial agents, NMR‐ and mass spectrometry‐based affinity selection screens were performed to identify compounds that bind to protein targets uniquely found in bacteria and encoded by genes essential for microbial viability. A biphenyl acid lead series emerged from an NMR‐based screen with the Haemophilus influenzae protein HI0065, a member of a family of probable ATP‐binding proteins found exclusively in eubacteria. The structure–activity relationships developed around the NMR‐derived biphenyl acid lead were consistent with on‐target antibacterial activity as the Staphylococcus aureus antibacterial activity of the series correlated extremely well with binding affinity to HI0065, while the correlation of binding affinity with B‐cell cytotoxicity was relatively poor. Although further studies are needed to conclusively establish the mode of action of the biphenyl series, these compounds represent novel leads that can serve as the basis for the development of novel antibacterial agents that appear to work via an unprecedented mechanism of action. Overall, these results support the genomics‐driven hypothesis that targeting bacterial essential gene products that are not present in eukaryotic cells can identify novel antibacterial agents.
Journal of Molecular Biology | 2012
Karolina Michalska; Changsoo Chang; Jamey Mack; Sarah Zerbs; Andrzej Joachimiak; Frank R. Collart
In vitro growth experiments have demonstrated that aromatic compounds derived from lignin can be metabolized and represent a major carbon resource for many soil bacteria. However, the proteins that mediate the movement of these metabolites across the cell membrane have not been thoroughly characterized. To address this deficiency, we used a library representative of lignin degradation products and a thermal stability screen to determine ligand specificity for a set of solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters. The ligand mapping process identified a set of proteins from Alphaproteobacteria that recognize various benzoate derivatives. Seven high-resolution crystal structures of these proteins in complex with four different aromatic compounds were obtained. The protein-ligand complexes provide details of molecular recognition that can be used to infer binding specificity. This structure-function characterization provides new insight for the biological roles of these ABC transporters and their SBPs, which had been previously annotated as branched-chain amino-acid-binding proteins. The knowledge derived from the crystal structures provides a foundation for development of sequence-based methods to predict the ligand specificity of other uncharacterized transporters. These results also demonstrate that Alphaproteobacteria possess a diverse set of transport capabilities for lignin-derived compounds. Characterization of this new class of transporters improves genomic annotation projects and provides insight into the metabolic potential of soil bacteria.
Proteins | 2013
Kemin Tan; Changsoo Chang; Marianne E. Cuff; Jerzy Osipiuk; Elizabeth V. Landorf; Jamey Mack; Sarah Zerbs; Andrzej Joachimiak; Frank R. Collart
Lignin comprises 15–25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP‐binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p‐coumarate, 3‐phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X‐ray crystal structures of protein–ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin‐derived aromatic compounds. The screens and structural data provide new functional assignments for these solute‐binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence‐based functional annotation methods for this family of proteins.Proteins 2013; 81:1709–1726.
PLOS ONE | 2014
Boguslaw Nocek; Anna Starus; Magdalena Makowska-Grzyska; Blanca Gutierrez; Stephen Sanchez; Robert Jedrzejczak; Jamey Mack; Kenneth W. Olsen; Andrzej Joachimiak; Richard C. Holz
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
Methods of Molecular Biology | 2014
Kemin Tan; Youngchang Kim; Catherine Hatzos-Skintges; Changsoo Chang; Marianne E. Cuff; Gekleng Chhor; Jerzy Osipiuk; Karolina Michalska; Boguslaw Nocek; Hao An; Gyorgy Babnigg; Lance Bigelow; Grazyna Joachimiak; Hui Li; Jamey Mack; Magdalena Makowska-Grzyska; Natalia Maltseva; Rory Mulligan; Christine Tesar; Min Zhou; Andrzej Joachimiak
The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.
Journal of Biomolecular NMR | 2001
Liping Yu; Jamey Mack; Phil Hajduk; Stephen W. Fesik
Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel β-sheet and two short α-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase – an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate.