Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie Bentham is active.

Publication


Featured researches published by Jamie Bentham.


American Journal of Human Genetics | 2012

Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease.

Rachel Soemedi; Ian Wilson; Jamie Bentham; Rebecca Darlay; Ana Töpf; Diana Zelenika; Catherine Cosgrove; Kerry Setchfield; Chris Thornborough; Javier Granados-Riveron; Gillian M. Blue; Jeroen Breckpot; Stephen Hellens; Simon Zwolinkski; Elise Glen; Chrysovalanto Mamasoula; Thahira Rahman; Darroch Hall; Anita Rauch; Koenraad Devriendt; Marc Gewillig; John O’Sullivan; David S. Winlaw; Frances A. Bu’Lock; J. David Brook; Shoumo Bhattacharya; Mark Lathrop; Mauro Santibanez-Koref; Heather J. Cordell; Judith A. Goodship

Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10(-5)). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ~5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ~4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.


Genes & Development | 2008

VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5

Dorota Szumska; Guido Pieles; Rachid Essalmani; M Bilski; Daniel Mesnard; K Kaur; Angela Franklyn; K El Omari; J Jefferis; Jamie Bentham; J M Taylor; Jürgen E. Schneider; Sebastian J. Arnold; P Johnson; Z Tymowska-Lalanne; David K. Stammers; Kieran Clarke; Stefan Neubauer; A Morris; Steve D.M. Brown; C Shaw-Smith; Armando Cama; Valeria Capra; J Ragoussis; Daniel B. Constam; Nabil G. Seidah; Annik Prat; Shoumo Bhattacharya

We have identified an ethylnitrosourea (ENU)-induced recessive mouse mutation (Vcc) with a pleiotropic phenotype that includes cardiac, tracheoesophageal, anorectal, anteroposterior patterning defects, exomphalos, hindlimb hypoplasia, a presacral mass, renal and palatal agenesis, and pulmonary hypoplasia. It results from a C470R mutation in the proprotein convertase PCSK5 (PC5/6). Compound mutants (Pcsk5(Vcc/null)) completely recapitulate the Pcsk5(Vcc/Vcc) phenotype, as does an epiblast-specific conditional deletion of Pcsk5. The C470R mutation ablates a disulfide bond in the P domain, and blocks export from the endoplasmic reticulum and proprotein convertase activity. We show that GDF11 is cleaved and activated by PCSK5A, but not by PCSK5A-C470R, and that Gdf11-deficient embryos, in addition to having anteroposterior patterning defects and renal and palatal agenesis, also have a presacral mass, anorectal malformation, and exomphalos. Pcsk5 mutation results in abnormal expression of several paralogous Hox genes (Hoxa, Hoxc, and Hoxd), and of Mnx1 (Hlxb9). These include known Gdf11 targets, and are necessary for caudal embryo development. We identified nonsynonymous mutations in PCSK5 in patients with VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb malformation OMIM 192350) and caudal regression syndrome, the phenotypic features of which resemble the mouse mutation. We propose that Pcsk5, at least in part via GDF11, coordinately regulates caudal Hox paralogs, to control anteroposterior patterning, nephrogenesis, skeletal, and anorectal development.


Human Molecular Genetics | 2012

Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

Rachel Soemedi; Ana Töpf; Ian Wilson; Rebecca Darlay; Thahira Rahman; Elise Glen; Darroch Hall; Ni Huang; Jamie Bentham; Shoumo Bhattacharya; Catherine Cosgrove; J. David Brook; Javier Granados-Riveron; Kerry Setchfield; Frances Bu'Lock; Chris Thornborough; Koenraad Devriendt; Jeroen Breckpot; Michael Hofbeck; Mark Lathrop; Anita Rauch; Gillian M. Blue; David S. Winlaw; Mauro Santibanez-Koref; Heather J. Cordell; Judith A. Goodship; Bernard Keavney

Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus.


Annals of the New York Academy of Sciences | 2008

Genetic Mechanisms Controlling Cardiovascular Development

Jamie Bentham; Shoumo Bhattacharya

Congenital heart disease (CHD) is a major cause of childhood morbidity and death in the West; the incidence is approximately 1 in 145 live births. Mendelian and chromosomal syndromes account for approximately 20% of CHD. The genetic mechanisms underlying non‐chromosomal or non‐Mendelian “sporadic” CHD, which account for the remaining 80%, are poorly understood. The genetic architecture of sporadic CHD likely includes accumulation of rare nonsynonymous variants in cardiac developmental genes leading to mutational loading of cardiac developmental networks, copy number variation in cardiac developmental genes, and common variants that may not be obviously linked to cardiac development but may alter genetic buffering pathways (e.g., folate metabolism). The rare mutations typically associated with sporadic CHD likely arise from the severe decrease in reproductive fitness selecting against any CHD‐causing gene variant. The resulting allelic heterogeneity reduces the power of genome‐wide association studies for CHD. A complementary approach to the genetic analysis of CHD is to resequence candidate genes that have been shown to be necessary for mouse heart development. The number of such genes likely exceeds 1700. To identify these genes, we have developed an enabling technology (high‐throughput magnetic resonance imaging of mouse embryos), which is used in combination with N‐ethyl‐N‐nitrosourea/transposon mutagenesis and knockout techniques. Key future challenges now involve translating discoveries made in mouse models to human CHD genetics and understanding the mechanisms that create and disrupt genetic buffering. A long‐term goal in CHD is to manipulate these pathways to enhance buffering and prevent disease in a manner analogous to the use of folate in preventing neural tube defects.


Nature Genetics | 2013

Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16.

Heather J. Cordell; Jamie Bentham; Ana Töpf; Diana Zelenika; Simon Heath; Chrysovalanto Mamasoula; Catherine Cosgrove; Gillian M. Blue; Javier Granados-Riveron; Kerry Setchfield; Chris Thornborough; Jeroen Breckpot; Rachel Soemedi; Ruairidh Martin; Thahira Rahman; Darroch Hall; Klaartje van Engelen; Antoon F. M. Moorman; Aelko H. Zwinderman; Phil Barnett; Tamara T. Koopmann; Michiel E. Adriaens; András Varró; Alfred L. George; Christobal Dos Remedios; Nanette H. Bishopric; Connie R. Bezzina; John O'Sullivan; Marc Gewillig; Frances Bu'Lock

We carried out a genome-wide association study (GWAS) of congenital heart disease (CHD). Our discovery cohort comprised 1,995 CHD cases and 5,159 controls and included affected individuals from each of the 3 major clinical CHD categories (with septal, obstructive and cyanotic defects). When all CHD phenotypes were considered together, no region achieved genome-wide significant association. However, a region on chromosome 4p16, adjacent to the MSX1 and STX18 genes, was associated (P = 9.5 × 10−7) with the risk of ostium secundum atrial septal defect (ASD) in the discovery cohort (N = 340 cases), and this association was replicated in a further 417 ASD cases and 2,520 controls (replication P = 5.0 × 10−5; odds ratio (OR) in replication cohort = 1.40, 95% confidence interval (CI) = 1.19–1.65; combined P = 2.6 × 10−10). Genotype accounted for ∼9% of the population-attributable risk of ASD.


Human Mutation | 2015

Targeted Next‐Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability

Detelina Grozeva; Keren J. Carss; Olivera Spasic-Boskovic; María-Isabel Tejada; Jozef Gecz; Marie Shaw; Mark Corbett; Eric Haan; Elizabeth Thompson; Kathryn Friend; Zaamin B. Hussain; Anna Hackett; Michael Field; Alessandra Renieri; Roger E. Stevenson; Charles E. Schwartz; James A B Floyd; Jamie Bentham; Catherine Cosgrove; Bernard Keavney; Shoumo Bhattacharya; F. Lucy Raymond

To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID‐associated genes using targeted next‐generation sequencing. Likely pathogenic rare variants were found in ∼11% of the cases (113 variants in 107/986 individuals: ∼8% of the individuals had a likely pathogenic loss‐of‐function [LoF] variant, whereas ∼3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%–15% yield from array CGH alone.


Human Molecular Genetics | 2013

Genome-wide association study identifies loci on 12q24 and 13q32 associated with Tetralogy of Fallot

Heather J. Cordell; Ana Töpf; Chrysovalanto Mamasoula; Alex V. Postma; Jamie Bentham; Diana Zelenika; Simon Heath; Gillian M. Blue; Catherine Cosgrove; Javier Granados Riveron; Rebecca Darlay; Rachel Soemedi; Ian Wilson; Kristin L. Ayers; Thahira Rahman; Darroch Hall; Barbara J.M. Mulder; Aelko H. Zwinderman; Klaartje van Engelen; J. David Brook; Kerry Setchfield; Frances Bu'Lock; Chris Thornborough; John O'Sullivan; A. Graham Stuart; Jonathan M. Parsons; Shoumo Bhattacharya; David S. Winlaw; Seema Mital; Marc Gewillig

We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10−7) and replicated convincingly (P = 3.9 × 10−5) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10−11 in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10−7) and replicated convincingly (P = 1.2 × 10−5) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10−11 in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TOF.


Nature Communications | 2017

X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3.

Chiara Olcese; Mitali Patel; Amelia Shoemark; Santeri Kiviluoto; Marie Legendre; Hywel Williams; Cara K. Vaughan; Jane Hayward; Alice Goldenberg; Richard D. Emes; Mustafa M. Munye; Laura Dyer; Thomas Joseph Cahill; Jeremy Bevillard; Corinne Gehrig; Michel Guipponi; Sandra Chantot; Philippe Duquesnoy; Lucie Thomas; Ludovic Jeanson; Bruno Copin; Aline Tamalet; Christel Thauvin-Robinet; Jean Francois Papon; Antoine Garin; Isabelle Pin; Gabriella Vera; Paul Aurora; Mahmoud R. Fassad; Lucy Jenkins

By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.


Circulation-cardiovascular Genetics | 2012

A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot

Judith A. Goodship; Darroch Hall; Ana Töpf; Chrysovalanto Mamasoula; Helen Griffin; Thahira Rahman; Elise Glen; Huay Tan; Julian Palomino Doza; Caroline L Relton; Jamie Bentham; Shoumo Bhattacharya; Catherine Cosgrove; David Brook; Javier Granados-Riveron; Frances Bu'Lock; John O'Sullivan; A. Graham Stuart; Jonathan M. Parsons; Heather J. Cordell; Bernard Keavney

Background— Tetralogy of Fallot (TOF) is the commonest cyanotic form of congenital heart disease. In 80% of cases, TOF behaves as a complex genetic condition exhibiting significant heritability. As yet, no common genetic variants influencing TOF risk have been robustly identified. Methods and Results— Two hundred and seven haplotype-tagging single nucleotide polymorphisms in 22 candidate genes were genotyped in a test cohort comprising 362 nonsyndromic British white patients with TOF together with 717 unaffected parents of patients and 183 unrelated healthy controls. Single nucleotide polymorphisms with suggestive evidence of association in the test cohort (P<0.01) were taken forward for genotyping in an independent replication cohort comprising 392 cases of TOF, 218 unaffected parents of patients, and 1319 controls. Significant association was observed for 1 single nucleotide polymorphism, rs11066320 in the PTPN11 gene, in both the test and the replication cohort. Genotype at rs11066320 was associated with a per-allele odds ratio of 1.34 (95% confidence interval [CI], 1.19 to 1.52; P=2.9×10−6) in the total cohort of TOF cases and controls; this remained highly significant after Bonferroni correction for 207 analyses (corrected P=0.00061). Genotype at rs11066320 was responsible for a population-attributable risk of TOF of approximately 10%. Conclusions— Common variation in the linkage disequilibrium block including the PTPN11 gene contributes to the risk of nonsyndromic TOF. Rare mutations in PTPN11 are known to cause the autosomal dominant condition Noonan syndrome, which includes congenital heart disease, by upregulating Ras/mitogen-activated protein kinase (MAPK) signaling. Our results suggest a role for milder perturbations in PTPN11 function in sporadic, nonsyndromic congenital heart disease.


Human Molecular Genetics | 2010

Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left–right patterning defects

Jamie Bentham; Anna C. Michell; Helen Lockstone; Daniel Andrew; Jürgen E. Schneider; Nigel A. Brown; Shoumo Bhattacharya

Deficiency of the transcription factor Cited2 in mice results in cardiac malformation, adrenal agenesis, neural tube, placental defects and partially penetrant cardiopulmonary laterality defects resulting from an abnormal Nodal->Pitx2c pathway. Here we show that a maternal high-fat diet more than doubles the penetrance of laterality defects and, surprisingly, induces palatal clefting in Cited2-deficient embryos. Both maternal diet and Cited2 deletion reduce embryo weight and kidney and thymus volume. Expression profiling identified 40 embryonic transcripts including Pitx2 that were significantly affected by embryonic genotype-maternal diet interaction. We show that a high-fat diet reduces Pitx2c levels >2-fold in Cited2-deficient embryos. Taken together, these results define a novel interaction between maternal high-fat diet and embryonic Cited2 deficiency that affects Pitx2c expression and results in abnormal laterality. They suggest that appropriate modifications of maternal diet may prevent such defects in humans.

Collaboration


Dive into the Jamie Bentham's collaboration.

Top Co-Authors

Avatar

Shoumo Bhattacharya

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Thornborough

University Hospitals of Leicester NHS Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. David Brook

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

A. Graham Stuart

Bristol Royal Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge