Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier Granados-Riveron is active.

Publication


Featured researches published by Javier Granados-Riveron.


American Journal of Human Genetics | 2012

Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease.

Rachel Soemedi; Ian Wilson; Jamie Bentham; Rebecca Darlay; Ana Töpf; Diana Zelenika; Catherine Cosgrove; Kerry Setchfield; Chris Thornborough; Javier Granados-Riveron; Gillian M. Blue; Jeroen Breckpot; Stephen Hellens; Simon Zwolinkski; Elise Glen; Chrysovalanto Mamasoula; Thahira Rahman; Darroch Hall; Anita Rauch; Koenraad Devriendt; Marc Gewillig; John O’Sullivan; David S. Winlaw; Frances A. Bu’Lock; J. David Brook; Shoumo Bhattacharya; Mark Lathrop; Mauro Santibanez-Koref; Heather J. Cordell; Judith A. Goodship

Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10(-5)). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ~5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ~4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.


American Journal of Human Genetics | 2014

Rare variants in NR2F2 cause congenital heart defects in humans

Saeed Al Turki; Ashok Kumar Manickaraj; Catherine L. Mercer; Sebastian S. Gerety; Marc-Phillip Hitz; Sarah J. Lindsay; Lisa Ca D’Alessandro; G. Jawahar Swaminathan; Jamie Bentham; Anne-Karin Arndt; Jacoba Louw; Jeroen Breckpot; Marc Gewillig; Bernard Thienpont; Hashim Abdul-Khaliq; Christine Harnack; Kirstin Hoff; Hans-Heiner Kramer; Stephan Schubert; Reiner Siebert; Okan Toka; Catherine Cosgrove; Hugh Watkins; Anneke Lucassen; Ita O’Kelly; Anthony P. Salmon; Frances A. Bu’Lock; Javier Granados-Riveron; Kerry Setchfield; Chris Thornborough

Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10(-7)) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters.


Human Molecular Genetics | 2012

Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

Rachel Soemedi; Ana Töpf; Ian Wilson; Rebecca Darlay; Thahira Rahman; Elise Glen; Darroch Hall; Ni Huang; Jamie Bentham; Shoumo Bhattacharya; Catherine Cosgrove; J. David Brook; Javier Granados-Riveron; Kerry Setchfield; Frances Bu'Lock; Chris Thornborough; Koenraad Devriendt; Jeroen Breckpot; Michael Hofbeck; Mark Lathrop; Anita Rauch; Gillian M. Blue; David S. Winlaw; Mauro Santibanez-Koref; Heather J. Cordell; Judith A. Goodship; Bernard Keavney

Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus.


Human Molecular Genetics | 2010

α-Cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects

Javier Granados-Riveron; Tushar K. Ghosh; Mark Pope; Frances Bu'Lock; Christopher Thornborough; Jacqueline Eason; Edwin P. Kirk; Diane Fatkin; Michael P. Feneley; Richard P. Harvey; John A.L. Armour; J. David Brook

Congenital heart defects (CHD) are collectively the most common form of congenital malformation. Studies of human cases and animal models have revealed that mutations in several genes are responsible for both familial and sporadic forms of CHD. We have previously shown that a mutation in MYH6 can cause an autosomal dominant form of atrial septal defect (ASD), whereas others have identified mutations of the same gene in patients with hypertrophic and dilated cardiomyopathy. In the present study, we report a mutation analysis of MYH6 in patients with a wide spectrum of sporadic CHD. The mutation analysis of MYH6 was performed in DNA samples from 470 cases of isolated CHD using denaturing high-performance liquid chromatography and sequence analysis to detect point mutations and small deletions or insertions, and multiplex amplifiable probe hybridization to detect partial or complete copy number variations. One non-sense mutation, one splicing site mutation and seven non-synonymous coding mutations were identified. Transfection of plasmids encoding mutant and non-mutant green fluorescent protein-MYH6 fusion proteins in mouse myoblasts revealed that the mutations A230P and A1366D significantly disrupt myofibril formation, whereas the H252Q mutation significantly enhances myofibril assembly in comparison with the non-mutant protein. Our data indicate that functional variants of MYH6 are associated with cardiac malformations in addition to ASD and provide a novel potential mechanism. Such phenotypic heterogeneity has been observed in other genes mutated in CHD.


Nature Genetics | 2013

Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16.

Heather J. Cordell; Jamie Bentham; Ana Töpf; Diana Zelenika; Simon Heath; Chrysovalanto Mamasoula; Catherine Cosgrove; Gillian M. Blue; Javier Granados-Riveron; Kerry Setchfield; Chris Thornborough; Jeroen Breckpot; Rachel Soemedi; Ruairidh Martin; Thahira Rahman; Darroch Hall; Klaartje van Engelen; Antoon F. M. Moorman; Aelko H. Zwinderman; Phil Barnett; Tamara T. Koopmann; Michiel E. Adriaens; András Varró; Alfred L. George; Christobal Dos Remedios; Nanette H. Bishopric; Connie R. Bezzina; John O'Sullivan; Marc Gewillig; Frances Bu'Lock

We carried out a genome-wide association study (GWAS) of congenital heart disease (CHD). Our discovery cohort comprised 1,995 CHD cases and 5,159 controls and included affected individuals from each of the 3 major clinical CHD categories (with septal, obstructive and cyanotic defects). When all CHD phenotypes were considered together, no region achieved genome-wide significant association. However, a region on chromosome 4p16, adjacent to the MSX1 and STX18 genes, was associated (P = 9.5 × 10−7) with the risk of ostium secundum atrial septal defect (ASD) in the discovery cohort (N = 340 cases), and this association was replicated in a further 417 ASD cases and 2,520 controls (replication P = 5.0 × 10−5; odds ratio (OR) in replication cohort = 1.40, 95% confidence interval (CI) = 1.19–1.65; combined P = 2.6 × 10−10). Genotype accounted for ∼9% of the population-attributable risk of ASD.


Circulation-cardiovascular Genetics | 2012

The Impact of Mechanical Forces in Heart Morphogenesis

Javier Granados-Riveron; J. David Brook

Congenital heart disease (CHD) is the most common birth defect in humans and results from deficient cardiac development, a complex process that is not completely understood. The heart starts to function before its morphogenesis is complete and the increasing needs of the growing embryo for oxygen and nutrients demand a proportional increase in the performance of the organ. We review recent findings supporting the hypothesis that the activity of the developing heart influences its morphogenesis and that internal or external factors, which significantly modify its functional capability, can in turn, induce anatomic cardiac defects. We propose that a role for early cardiac contraction in heart development is supported by recent experimental evidence and that the Notch pathway acts as a key transducer between hemodynamic stimuli and cardiogenesis. ### Cardiac Contraction Begins Before Convective Transport Is Necessary Several pieces of evidence suggest that heart primordium contraction starts well before the active transport of oxygen and nutrients by the circulation is required to meet the needs of the embryonic tissues. For example, rhythmic action potentials can be detected in the chick heart primordium as early as Hamburger-Hamilton stage 9 (HH9, 7-somite stage, 29–33 hours after laying).1 The chick heart tube starts showing contraction as early as HH10 (10-somite, 33–38 hours), whereas effective blood flow starts during looping at HH12 (16-somite, 45–49 hours).2 By days 3 to 4 (HH20-23), vigorous circulation is established.3 However, total elimination of cardiac ejection by complete ligation of the cardiac outflow tract in 3- or 4-day chick embryos has no significant effect on O2 consumption or eye growth in the 4 hours after the procedure4 and no correlation between cardiac output and eye, vessel growth, or body mass accumulation was observed in 24 hours after partial conotruncal ligation.5 Moreover, chick embryos show no hemoglobin-mediated transport of oxygen up to about 3 …


Congenital Heart Disease | 2012

Combined Mutation Screening of NKX2-5, GATA4, and TBX5 in Congenital Heart Disease: Multiple Heterozygosity and Novel Mutations

Javier Granados-Riveron; Mark Pope; Frances Bu'Lock; Christopher Thornborough; Jacqueline Eason; Kerry Setchfield; Ami Ketley; Edwin P. Kirk; Diane Fatkin; Michael P. Feneley; Richard P. Harvey; J. David Brook

Background Variants of several genes encoding transcription modulators, signal transduction, and structural proteins are known to cause Mendelian congenital heart disease (CHD). NKX2-5 and GATA4 were the first CHD-causing genes identified by linkage analysis in large affected families. Mutations of TBX5 cause Holt–Oram syndrome, which includes CHD as a clinical feature. All three genes have a well-established role in cardiac development. Design In order to investigate the possible role of multiple mutations in CHD, a combined mutation screening was performed in NKX2-5, GATA4, and TBX5 in the same patient cohort. Samples from a cohort of 331 CHD patients were analyzed by polymerase chain reaction, double high-performance liquid chromatography and sequencing in order to identify changes in the NKX2-5, GATA4, and TBX5 genes. Results Two cases of multiple heterozygosity of putative disease-causing mutations were identified. One patient was found with a novel L122P NKX2-5 mutation in combination with the private A1443D mutation of MYH6. A patient heterozygote for a D425N GATA4 mutation carries also a private mutation of the MYH6 gene (V700M). Conclusions In addition to reporting two novel mutations of NKX2-5 in CHD, we describe families where multiple individual mutations seem to have an additive effect over the pathogenesis of CHD. Our findings highlight the usefulness of multiple gene mutational analysis of large CHD cohorts.


Human Molecular Genetics | 2014

High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines

Ami Ketley; Catherine Z. Chen; Xin Li; Sukrat Arya; Thelma E. Robinson; Javier Granados-Riveron; Inyang Udosen; Glenn E. Morris; Ian Holt; Dennis Furling; Soraya Chaouch; Ben Haworth; Noel Southall; Paul Shinn; Wei Zheng; Christopher P. Austin; Christopher J. Hayes; J. David Brook

Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays based on molecular features of DM have also been employed. Two compounds that reduce and/or remove nuclear foci have been identified, Ro 31-8220 and chromomycin A3. Ro 31-8220 is a PKC inhibitor, previously shown to affect the hyperphosphorylation of CELF1 and ameliorate the cardiac phenotype in a DM1 mouse model. We show that the same compound eliminates nuclear foci, reduces MBNL1 protein in the nucleus, affects ATP2A1 alternative splicing and reduces steady-state levels of CELF1 protein. We demonstrate that this effect is independent of PKC activity and conclude that this compound may be acting on alternative kinase targets within DM pathophysiology. Understanding the activity profile for this compound is key for the development of targeted therapeutics in the treatment of DM.


Circulation-cardiovascular Genetics | 2012

A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot

Judith A. Goodship; Darroch Hall; Ana Töpf; Chrysovalanto Mamasoula; Helen Griffin; Thahira Rahman; Elise Glen; Huay Tan; Julian Palomino Doza; Caroline L Relton; Jamie Bentham; Shoumo Bhattacharya; Catherine Cosgrove; David Brook; Javier Granados-Riveron; Frances Bu'Lock; John O'Sullivan; A. Graham Stuart; Jonathan M. Parsons; Heather J. Cordell; Bernard Keavney

Background— Tetralogy of Fallot (TOF) is the commonest cyanotic form of congenital heart disease. In 80% of cases, TOF behaves as a complex genetic condition exhibiting significant heritability. As yet, no common genetic variants influencing TOF risk have been robustly identified. Methods and Results— Two hundred and seven haplotype-tagging single nucleotide polymorphisms in 22 candidate genes were genotyped in a test cohort comprising 362 nonsyndromic British white patients with TOF together with 717 unaffected parents of patients and 183 unrelated healthy controls. Single nucleotide polymorphisms with suggestive evidence of association in the test cohort (P<0.01) were taken forward for genotyping in an independent replication cohort comprising 392 cases of TOF, 218 unaffected parents of patients, and 1319 controls. Significant association was observed for 1 single nucleotide polymorphism, rs11066320 in the PTPN11 gene, in both the test and the replication cohort. Genotype at rs11066320 was associated with a per-allele odds ratio of 1.34 (95% confidence interval [CI], 1.19 to 1.52; P=2.9×10−6) in the total cohort of TOF cases and controls; this remained highly significant after Bonferroni correction for 207 analyses (corrected P=0.00061). Genotype at rs11066320 was responsible for a population-attributable risk of TOF of approximately 10%. Conclusions— Common variation in the linkage disequilibrium block including the PTPN11 gene contributes to the risk of nonsyndromic TOF. Rare mutations in PTPN11 are known to cause the autosomal dominant condition Noonan syndrome, which includes congenital heart disease, by upregulating Ras/mitogen-activated protein kinase (MAPK) signaling. Our results suggest a role for milder perturbations in PTPN11 function in sporadic, nonsyndromic congenital heart disease.


BMC Genetics | 2013

Low-frequency intermediate penetrance variants in the ROCK1 gene predispose to Tetralogy of Fallot

Julian Palomino Doza; Ana Töpf; Jamie Bentham; Shoumo Bhattacharya; Catherine Cosgrove; J. David Brook; Javier Granados-Riveron; Frances A. Bu’Lock; John O’Sullivan; A. Graham Stuart; Jonathan M. Parsons; Caroline L Relton; Judith A. Goodship; Deborah J. Henderson; Bernard Keavney

BackgroundEpidemiological studies indicate a substantial excess familial recurrence of non-syndromic Tetralogy of Fallot (TOF), implicating genetic factors that remain largely unknown. The Rho induced kinase 1 gene (ROCK1) is a key component of the planar cell polarity signalling pathway, which plays an important role in normal cardiac development. The aim of this study was to investigate the role of genetic variation in ROCK1 on the risk of TOF.ResultsROCK1 was sequenced in a discovery cohort of 93 non-syndromic TOF probands to identify rare variants. TagSNPs were selected to capture commoner variation in ROCK1. Novel variants and TagSNPs were genotyped in a discovery cohort of 458 TOF cases and 1331 healthy controls, and positive findings were replicated in a further 209 TOF cases and 1290 healthy controls. Association between genotypes and TOF was assessed using LAMP.A rare SNP (c.807C > T; rs56085230) discovered by sequencing was associated with TOF risk (p = 0.006) in the discovery cohort. The variant was also significantly associated with the risk of TOF in the replication cohort (p = 0.018). In the combined cohorts the odds ratio for TOF was 2.61 (95% CI 1.58-4.30); p < 0.0001. The minor allele frequency of rs56085230 in the cases was 0.02, and in the controls it was 0.007. The variant accounted for 1% of the population attributable risk (PAR) of TOF. We also found significant association with TOF for an uncommon TagSNP in ROCK1, rs288979 (OR 1.64 [95% CI 1.15-2.30]; p = 1.5x10-5). The minor allele frequency of rs288979 in the controls was 0.043, and the variant accounted for 11% of the PAR of TOF. These association signals were independent of each other, providing additional internal validation of our result.ConclusionsLow frequency intermediate penetrance (LFIP) variants in the ROCK1 gene predispose to the risk of TOF.

Collaboration


Dive into the Javier Granados-Riveron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. David Brook

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Thornborough

University Hospitals of Leicester NHS Trust

View shared research outputs
Top Co-Authors

Avatar

Jeroen Breckpot

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoumo Bhattacharya

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

David Brook

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge