Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie Hannaford is active.

Publication


Featured researches published by Jamie Hannaford.


Progress in Physical Geography | 2015

Climate change and water in the UK - past changes and future prospects

Glen Watts; Richard W. Battarbee; John P. Bloomfield; J. Crossman; A. Daccache; Isabelle Durance; J. Alex Elliott; Grace Garner; Jamie Hannaford; David M. Hannah; Tim Hess; Christopher R. Jackson; Alison L. Kay; Martin Kernan; Jerry W. Knox; Jonathan Mackay; Dt Monteith; S.J. Ormerod; Jemima Rance; Marianne E. Stuart; Andrew J. Wade; Steven Wade; Paul Whitehead; Robert L. Wilby

Climate change is expected to modify rainfall, temperature and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of anthropogenic climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to anthropogenic climate forcing, but over the last 50 years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and water availability. Summer flows may decrease on average, but floods may become larger and more frequent. River and lake water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms in summer, and because of higher flows in the winter. In communicating this important work, researchers should pay particular attention to explaining confidence and uncertainty clearly. Much of the relevant research is either global or highly localized: decision-makers would benefit from more studies that address water and climate change at a spatial and temporal scale appropriate for the decisions they make.


Science | 2017

Changing climate shifts timing of European floods

Günter Blöschl; Julia Hall; Juraj Parajka; Rui A. P. Perdigão; Bruno Merz; Berit Arheimer; Giuseppe T. Aronica; Ardian Bilibashi; Ognjen Bonacci; Marco Borga; Ivan Čanjevac; Attilio Castellarin; Giovanni Battista Chirico; Pierluigi Claps; Károly Fiala; N. A. Frolova; Liudmyla Gorbachova; Ali Gül; Jamie Hannaford; Shaun Harrigan; M. B. Kireeva; Andrea Kiss; Thomas R. Kjeldsen; Silvia Kohnová; Jarkko Koskela; Ondrej Ledvinka; Neil Macdonald; Maria Mavrova-Guirguinova; Luis Mediero; Ralf Merz

Flooding along the river Will a warming climate affect river floods? The prevailing sentiment is yes, but a consistent signal in flood magnitudes has not been found. Blöschl et al. analyzed the timing of river floods in Europe over the past 50 years and found clear patterns of changes in flood timing that can be ascribed to climate effects (see the Perspective by Slater and Wilby). These variations include earlier spring snowmelt floods in northeastern Europe, later winter floods around the North Sea and parts of the Mediterranean coast owing to delayed winter storms, and earlier winter floods in western Europe caused by earlier soil moisture maxima. Science, this issue p. 588 see also p. 552 Climate change is affecting the timing of river flooding across Europe. A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.


Journal of Hydrometeorology | 2011

How Well Do Large-Scale Models Reproduce Regional Hydrological Extremes in Europe?

Christel Prudhomme; Simon Parry; Jamie Hannaford; Douglas B. Clark; Stefan Hagemann; F. Voss

AbstractThis paper presents a new methodology for assessing the ability of gridded hydrological models to reproduce large-scale hydrological high and low flow events (as a proxy for hydrological extremes) as described by catalogues of historical droughts [using the regional deficiency index (RDI)] and high flows [regional flood index (RFI)] previously derived from river flow measurements across Europe. Using the same methods, total runoff simulated by three global hydrological models from the Water Model Intercomparison Project (WaterMIP) [Joint U.K. Land Environment Simulator (JULES), Water Global Assessment and Prognosis (WaterGAP), and Max Planck Institute Hydrological Model (MPI-HM)] run with the same meteorological input (watch forcing data) at the same spatial 0.5° grid was used to calculate simulated RDI and RFI for the period 1963–2001 in the same European regions, directly comparable with the observed catalogues. Observed and simulated RDI and RFI time series were compared using three performance...


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2012

Reference hydrologic networks I. The status and potential future directions of national reference hydrologic networks for detecting trends

Paul H. Whitfield; Donald H. Burn; Jamie Hannaford; Hélène Higgins; Glenn A. Hodgkins; Terry Marsh; Ulrich Looser

Abstract Identifying climate-driven trends in river flows on a global basis is hampered by a lack of long, quality time series data for rivers with relatively undisturbed regimes. This is a global problem compounded by the lack of support for essential long-term monitoring. Experience demonstrates that, with clear strategic objectives, and the support of sponsoring organizations, reference hydrologic networks can constitute an exceptionally valuable data source to effectively identify, quantify and interpret hydrological change—the speed and magnitude of which is expected to a be a primary driver of water management and flood alleviation strategies through the future—and for additional applications. Reference hydrologic networks have been developed in many countries in the past few decades. These collections of streamflow gauging stations, that are maintained and operated with the intention of observing how the hydrology of watersheds responds to variations in climate, are described. The status of networks under development is summarized. We suggest a plan of actions to make more effective use of this collection of networks. Editor Z.W. Kundzewicz; Associate editor K. Hamed Citation Whitfield, P.H., et al., 2012. Reference hydrologic networks I. The status and potential future directions of national reference hydrologic networks for detecting trends. Hydrological Sciences Journal, 57 (8), 1562–1579.


Progress in Physical Geography | 2015

Climate-driven changes in UK river flows: A review of the evidence

Jamie Hannaford

There is a burgeoning international literature on hydro-climatic trend detection, motivated by the need to detect and interpret any emerging changes in river flows associated with anthropogenic climate change. The UK has a particularly strong evidence base in this area thanks to a well-developed monitoring programme and a wealth of studies published over the last 20 years. This paper reviews this research, with a view to assessing the evidence for climate change influences on UK river flow, including floods and droughts. This assessment is of international relevance given the scale of the research effort in the UK, a densely monitored and data-rich environment, but one with significant human disturbances to river flow regimes, as in many parts of the world. The review finds that changes can be detected in river flow regimes, some of which agree with future change projections, while others are in apparent contradiction. Observed changes generally cannot be attributed to climate change, largely due to the fact that river flow records are limited in length and the identification of short-term trends is confounded by natural variability. A UK ‘Benchmark’ network of near-natural catchments is an internationally significant example of an initiative to enable climate variability to be discerned from direct human disturbances (e.g. abstractions, dam construction). Generally, however, the problem of attribution has been tackled rather indirectly in the UK, as elsewhere, and more efforts are required to attribute change in a more rigorous manner.


Environmental Research Letters | 2015

Long-range forecasts of UK winter hydrology

Cecilia Svensson; Anca Brookshaw; Adam A. Scaife; Victoria A. Bell; Jonathan Mackay; Christopher R. Jackson; Jamie Hannaford; Helen N. Davies; Alberto Arribas; S Stanley

Seasonal river flow forecasts are beneficial for planning agricultural activities, river navigation, and for management of reservoirs for public water supply and hydropower generation. In the United Kingdom (UK), skilful seasonal river flow predictions have previously been limited to catchments in lowland (southern and eastern) regions. Here we show that skilful long-range forecasts of winter flows can now be achieved across the whole of the UK. This is due to a remarkable geographical complementarity between the regional geological and meteorological sources of predictability for river flows. Forecast skill derives from the hydrogeological memory of antecedent conditions in southern and eastern parts of the UK and from meteorological predictability in northern and western areas. Specifically, it is the predictions of the atmospheric circulation over the North Atlantic that provides the skill at the seasonal timescale. In addition, significant levels of skill in predicting the frequency of winter high flow events is demonstrated, which has the potential to allow flood adaptation measures to be put in place.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2012

Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow

Donald H. Burn; Jamie Hannaford; Glenn A. Hodgkins; Paul H. Whitfield; Robin Thorne; Terry Marsh

Abstract Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs. Editor Z.W. Kundzewicz; Associate editor K. Hamed Citation Burn, D. H., et al., 2012. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrological Sciences Journal, 57 (8), 1580–1593.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

The effective management of national hydrometric data: experiences from the United Kingdom

Harry Dixon; Jamie Hannaford; Matthew Fry

Abstract Access to hydrometric information underpins many areas of effective water management. This paper explores the operational practices of one national hydrological information service, the UK National River Flow Archive, in collating, managing and providing access to river flow data. An information lifecycle approach to hydrometric data management is advocated, with the paper detailing current UK procedures in the areas of: monitoring network design and development; data sensing and recording; validation and archival; synthesis and analysis; and data dissemination. The methods and policies outlined herein are widely transferable to other hydrological data archives around the world. Editor D. Koutsoyiannis Citation Dixon, H., Hannaford, J., and Fry, M.J., 2013. The effective management of national hydrometric data: experiences from the United Kingdom. Hydrological Sciences Journal, 58 (7), 1383–1399.


Climate Dynamics | 2013

Improved confidence in regional climate model simulations of precipitation evaluated using drought statistics from the ENSEMBLES models

Cathrine Fox Maule; Peter Thejll; Jesper Christensen; Synne H. Svendsen; Jamie Hannaford

An ensemble of regional climate model simulations from the European framework project ENSEMBLES is compared with observations of low precipitation events across a number of European regions. We characterize precipitation deficits in terms of two drought indices, the Standardized Precipitation Index and the self-calibrated Palmer Drought Severity Index. Models that robustly describe the observations for the period 1961–2000 in given regions are identified and an assessment of the overall performance of the ensemble is provided. The results show that in general, models capture the most severe drought events and that the ensemble mean model also performs well. Some regions that appear to be more problematic to simulate well are also identified. These are relatively small regions and have rather complex topographical features. The analysis suggests that assessment of future drought occurrence based on climate change experiments in general would appear to be robust. But due to the heterogeneous and often fine-scaled structure of drought occurrence, quantitative results should be used with great care, particularly in regions with complex terrain and limited information about past drought occurrence.


Water Resources Research | 2017

Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications

Cecilia Svensson; Jamie Hannaford; Ilaria Prosdocimi

Drought indicators are used as triggers for action and so are the foundation of drought monitoring and early warning. The computation of drought indicators like the standardized precipitation index (SPI) and standardized streamflow index (SSI) require a statistical probability distribution to be fitted to the observed data. Both precipitation and streamflow have a lower bound at zero, and their empirical distributions tend to have positive skewness. For deriving the SPI, the Gamma distribution has therefore often been a natural choice. The concept of the SSI is newer and there is no consensus regarding distribution. In the present study, twelve different probability distributions are fitted to streamflow and catchment average precipitation for four durations (1, 3, 6, and 12 months), for 121 catchments throughout the United Kingdom. The more flexible three- and four-parameter distributions generally do not have a lower bound at zero, and hence may attach some probability to values below zero. As a result, there is a censoring of the possible values of the calculated SPIs and SSIs. This can be avoided by using one of the bounded distributions, such as the reasonably flexible three-parameter Tweedie distribution, which has a lower bound (and potentially mass) at zero. The Tweedie distribution has only recently been applied to precipitation data, and only for a few sites. We find it fits both precipitation and streamflow data nearly as well as the best of the traditionally used three-parameter distributions, and should improve the accuracy of drought indices used for monitoring and early warning.

Collaboration


Dive into the Jamie Hannaford's collaboration.

Top Co-Authors

Avatar

Simon Parry

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

Melinda Lewis

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Svoboda

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Cedric Laize

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mike Acreman

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge