Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie K. Miller is active.

Publication


Featured researches published by Jamie K. Miller.


Cancer Research | 2008

Met Receptor Contributes to Trastuzumab Resistance of Her2-Overexpressing Breast Cancer Cells

David L. Shattuck; Jamie K. Miller; Kermit L. Carraway; Colleen Sweeney

Her2 is overexpressed in 20% to 30% of breast tumors and correlates with reduced disease-free and overall patient survival. Trastuzumab, a humanized monoclonal antibody directed against Her2, represents the first Her2-targeted therapy, which decreases the risk of relapse and prolongs patient survival. Resistance to trastuzumab, both inherent and treatment-acquired, represents a significant barrier to the effective treatment of Her2 (+) breast cancer. The Met receptor tyrosine kinase is aberrantly expressed in breast cancer and predicts poor patient prognosis. In this study, we find that Met is frequently expressed in Her2-overexpressing breast cancer cells, as well as Her2 (+) breast cancer. Importantly, Met contributes to trastuzumab resistance, as inhibition of Met sensitizes cells to trastuzumab-mediated growth inhibition, whereas Met activation protects cells against trastuzumab by abrogating p27 induction. Remarkably, Her2-overexpressing breast cancer cells rapidly up-regulate Met expression after trastuzumab treatment, promoting their own resistance. Our study suggests that a subset of Her2 (+) patients may benefit from combined inhibition of Her2 and Met.


Molecular and Cellular Biology | 2007

LRIG1 Is a Novel Negative Regulator of the Met Receptor and Opposes Met and Her2 Synergy

David L. Shattuck; Jamie K. Miller; Melanie B. Laederich; Melanie Funes; Heidi Petersen; Kermit L. Carraway; Colleen Sweeney

ABSTRACT The Met receptor tyrosine kinase regulates a complex array of cellular behaviors collectively known as “invasive growth.” While essential for normal development and wound repair, this program is frequently co-opted by tumors to promote their own growth, motility, and invasion. Met is overexpressed in a variety of human tumors, and this aberrant expression correlates with poor patient prognosis. Previous studies indicate that Met receptor levels are governed in part by cbl-mediated ubiquitination and degradation, and uncoupling of Met from cbl-mediated ubiquitination promotes its transforming activity. Here we describe a novel mechanism for Met degradation. We find that the Met receptor interacts with the transmembrane protein LRIG1 independent of hepatocyte growth factor (HGF) stimulation and that LRIG1 destabilizes the Met receptor in a cbl-independent manner. Overexpression of LRIG1 destabilizes endogenous Met receptor in breast cancer cells and impairs their ability to respond to HGF. LRIG1 knockdown increases Met receptor half-life, indicating that it plays an essential role in Met degradation. Finally, LRIG1 opposes Met synergy with the ErbB2/Her2 receptor tyrosine kinase in driving cellular invasion. We conclude that LRIG1 is a novel suppressor of Met function, serving to regulate cellular receptor levels by promoting Met degradation in a ligand- and cbl-independent manner.


Cancer Research | 2008

Suppression of the Negative Regulator LRIG1 Contributes to ErbB2 Overexpression in Breast Cancer

Jamie K. Miller; David L. Shattuck; Ellen Ingalla; Lily Yen; Alexander D. Borowsky; Lawrence J. T. Young; Robert D. Cardiff; Kermit L. Carraway; Colleen Sweeney

The ErbB2 receptor tyrosine kinase is overexpressed in approximately 25% of breast tumors and contributes to poor patient prognosis and therapeutic resistance. Here, we examine the role of the recently discovered ErbB negative regulator LRIG1 in ErbB2(+) breast cancer. We observe that LRIG1 protein levels are significantly suppressed in ErbB2-induced mammary tumors in transgenic mice as well as in the majority of ErbB2(+) human breast tumors. These observations raise the possibility that LRIG1 loss could contribute to the initiation or growth of ErbB2(+) breast tumors. RNA interference-mediated knockdown of endogenous LRIG1 in the ErbB2-overexpressing breast tumor cell lines MDA-MB-453 and BT474 further elevates ErbB2 in these cells and augments cellular proliferation. In contrast, ectopic expression of LRIG1 reverses these trends. Interestingly, we observe that LRIG1 protein levels are suppressed in response to ErbB receptor activation in breast tumor cells but are unaffected by ErbB activation in immortalized nontransformed breast epithelial cells. Our observations indicate that the suppression of LRIG1 protein levels is a common feature of breast tumors. Moreover, our observations point to the existence of a feed-forward regulatory loop in breast tumor cells where aberrant ErbB2 signaling suppresses LRIG1 protein levels, which in turn contributes to ErbB2 overexpression.


Journal of Biological Chemistry | 2006

The mucin Muc4 potentiates neuregulin signaling by increasing the cell surface populations of ErbB2 and ErbB3

Melanie Funes; Jamie K. Miller; Cary Lai; Kermit L. Carraway; Colleen Sweeney

Mucins provide a protective barrier for epithelial surfaces, and their overexpression in tumors has been implicated in malignancy. We have previously demonstrated that Muc4, a transmembrane mucin that promotes tumor growth and metastasis, physically interacts with the ErbB2 receptor tyrosine kinase and augments receptor tyrosine phosphorylation in response to the neuregulin-1β (NRG1β) growth factor. In the present study we demonstrate that Muc4 expression in A375 human melanoma cells, as well as MCF7 and T47D human breast cancer cells, enhances NRG1β signaling through the phosphatidylinositol 3-kinase pathway. In examining the mechanism underlying Muc4-potetiated ErbB2 signaling, we found that Muc4 expression markedly augments NRG1β binding to A375 cells without altering the total quantity of receptors expressed by the cells. Cell-surface protein biotinylation experiments and immunofluorescence studies suggest that Muc4 induces the relocalization of the ErbB2 and ErbB3 receptors from intracellular compartments to the plasma membrane. Moreover, Muc4 interferes with the accumulation of surface receptors within internal compartments following NRG1β treatment by suppressing the efficiency of receptor internalization. These observations suggest that transmembrane mucins can modulate receptor tyrosine kinase signaling by influencing receptor localization and trafficking and contribute to our understanding of the mechanisms by which mucins contribute to tumor growth and progression.


Molecular Cancer Research | 2011

Lrig1 is an estrogen regulated growth suppressor and correlates with longer relapse free survival in ERα-positive breast cancer

Sheryl R. Krig; Seth Frietze; Catalina Simion; Jamie K. Miller; Will H.D. Fry; Hanine Rafidi; Lakmal Kotelawala; Lihong Qi; Obi L. Griffith; Joe W. Gray; Kermit L. Carraway; Colleen Sweeney

Lrig1 is the founding member of the Lrig family and has been implicated in the negative regulation of several oncogenic receptor tyrosine kinases including ErbB2. Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumors. Given this heterogeneity, whether Lrig1 functions to suppress or promote tumor growth remains a critical question. Previously, we found that Lrig1 was poorly expressed in ErbB2-positive breast cancer, suggesting that Lrig1 has a growth-inhibitory role in this tumor type. However, breast cancer is a complex disease, with ErbB2-positive tumors accounting for just 25% of all breast cancers. To gain a better understanding of the role of Lrig1 in breast cancer, we examined its expression in estrogen receptor α (ERα)-positive disease which accounts for the majority of breast cancers. We find that Lrig1 is expressed at significantly higher levels in ERα-positive disease than in ERα-negative disease. Our study provides a molecular rationale for Lrig1 enrichment in ERα-positive disease by showing that Lrig1 is a target of ERα. Estrogen stimulates Lrig1 accumulation and disruption of this induction enhances estrogen-dependent tumor cell growth, suggesting that Lrig1 functions as an estrogen-regulated growth suppressor. In addition, we find that Lrig1 expression correlates with prolonged relapse-free survival in ERα-positive breast cancer, identifying Lrig1 as a new prognostic marker in this setting. Finally, we show that ErbB2 activation antagonizes ERα-driven Lrig1 expression, providing a mechanistic explanation for Lrig1 loss in ErbB2-positive breast cancer. This work provides strong evidence for a growth-inhibitory role for Lrig1 in breast cancer. Mol Cancer Res; 9(10); 1406–17. ©2011 AACR.


Nature Biotechnology | 2010

The regulatory bottleneck for biotech specialty crops

Jamie K. Miller; Kent J. Bradford

Specialty crops, which include fruits, vegetables, nuts, turf and ornamental crops, are important components of human diets and provide environmental amenities1. In 2007, such crops represented ~40% of the


Breast Cancer Research | 2009

The membrane mucin MUC4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells

Heather C. Workman; Jamie K. Miller; Ellen Ingalla; Rouminder P. Kaur; Diane I. Yamamoto; Laurel Beckett; Lawrence J. T. Young; Robert D. Cardiff; Alexander D. Borowsky; Kermit L. Carraway; Colleen Sweeney

140 billion in total agricultural receipts, despite being cultivated on just 4% of the total cropped area.


Archives of Biochemistry and Biophysics | 2011

Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression.

Christoph F.A. Vogel; Wen Li; Dalei Wu; Jamie K. Miller; Colleen Sweeney; Gwendal Lazennec; Yasuko Fujisawa; Fumio Matsumura

IntroductionPrevious studies indicate that overexpression of the membrane-associated mucin MUC4 is potently anti-adhesive to cultured tumor cells, and suppresses cellular apoptotic response to a variety of insults. Such observations raise the possibility that MUC4 expression could contribute to tumor progression or metastasis, but the potential involvement of MUC4 in breast cancer has not been rigorously assessed. The present study aimed to investigate the expression of the membrane mucin MUC4 in normal breast tissue, primary breast tumors and lymph node metastases, and to evaluate the role of MUC4 in promoting the malignant properties of breast tumor cells.MethodsMUC4 expression levels in patient-matched normal and tumor breast tissue was initially examined by immunoblotting lysates of fresh frozen tissue samples with a highly specific preparation of anti-MUC4 monoclonal antibody 1G8. Immunohistochemical analysis was then carried out using tissue microarrays encompassing patient-matched normal breast tissue and primary tumors, and patient-matched lymph node metastases and primary tumors. Finally, shRNA-mediated knockdown was employed to assess the contribution of MUC4 to the cellular growth and malignancy properties of JIMT-1 breast cancer cells.ResultsImmunoblotting and immunohistochemistry revealed that MUC4 levels are suppressed in the majority (58%, p < 0.001) of primary tumors relative to patient-matched normal tissue. On the other hand, lymph node metastatic lesions from 37% (p < 0.05) of patients expressed higher MUC4 protein levels than patient-matched primary tumors. MUC4-positive tumor emboli were often found in lymphovascular spaces of lymph node metastatic lesions. shRNA-mediated MUC4 knockdown compromised the migration, proliferation and anoikis resistance of JIMT-1 cells, strongly suggesting that MUC4 expression actively contributes to cellular properties associated with breast tumor metastasis.ConclusionsOur observations suggest that after an initial loss of MUC4 levels during the transition of normal breast tissue to primary tumor, the re-establishment of elevated MUC4 levels confers an advantage to metastasizing breast tumor cells by promoting the acquisition of cellular properties associated with malignancy.


Oncogene | 2010

ZNF217, a candidate breast cancer oncogene amplified at 20q13, regulates expression of the ErbB3 receptor tyrosine kinase in breast cancer cells

Sheryl R. Krig; Jamie K. Miller; Seth Frietze; Laurel Beckett; Richard M. Neve; Peggy J. Farnham; Paul Yaswen; Colleen Sweeney

The aryl hydrocarbon receptor (AhR) has been best known for its role in mediating the toxicity of dioxin. Here we show that AhR overexpression is found among estrogen receptor (ER)α-negative human breast tumors and that its overexpression is positively correlated to that of the NF-κB subunit RelB and Interleukin (IL)-8. Increased DNA binding activity of the AhR and RelB is coupled to IL-8 overexpression in primary breast cancer tissue, which was also supported by in situ hybridization. Activation of AhR in vitro by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced IL-8 expression in MDA-MB 436 and MCF-7 cells in an AhR and RelB dependent manner. Consistently, downregulation of RelB or AhR by small interfering RNAs (siRNA) decreased the level of IL-8 but increased expression of ERα in vitro in MCF-7 cells. Our results strongly suggest that RelB and AhR have a critical role in the regulation of IL-8 and reveal a supportive role of RelB and AhR in the anti-apoptotic response in human breast cancer cells. AhR and RelB may present a novel therapeutic target for inflammatory driven breast carcinogenesis and tumor progression. Overexpression of pro-survival factors AhR and RelB may explain the process of the development of environmentally-induced type of breast cancers.


Journal of Bacteriology | 2005

Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides

Preethi Chander; Kari Halbig; Jamie K. Miller; Christopher J. Fields; Heather K. S. Bonner; Gail K. Grabner; Robert L. Switzer; Janet L. Smith

Understanding the mechanisms underlying ErbB3 overexpression in breast cancer will facilitate the rational design of therapies to disrupt ErbB2-ErbB3 oncogenic function. Although ErbB3 overexpression is frequently observed in breast cancer, the factors mediating its aberrant expression are poorly understood. In particular, the ErbB3 gene is not significantly amplified, raising the question as to how ErbB3 overexpression is achieved. In this study we showed that the ZNF217 transcription factor, amplified at 20q13 in ∼20% of breast tumors, regulates ErbB3 expression. Analysis of a panel of human breast cancer cell lines (n=50) and primary human breast tumors (n=15) showed a strong positive correlation between ZNF217 and ErbB3 expression. Ectopic expression of ZNF217 in human mammary epithelial cells induced ErbB3 expression, whereas ZNF217 silencing in breast cancer cells resulted in decreased ErbB3 expression. Although ZNF217 has previously been linked with transcriptional repression because of its close association with C-terminal-binding protein (CtBP)1/2 repressor complexes, our results show that ZNF217 also activates gene expression. We showed that ZNF217 recruitment to the ErbB3 promoter is CtBP1/2-independent and that ZNF217 and CtBP1/2 have opposite roles in regulating ErbB3 expression. In addition, we identify ErbB3 as one of the mechanisms by which ZNF217 augments PI-3K/Akt signaling.

Collaboration


Dive into the Jamie K. Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Ingalla

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn N. Hayes

California State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge