Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamil Lambert is active.

Publication


Featured researches published by Jamil Lambert.


Medical Physics | 2007

In vivo dosimeters for HDR brachytherapy: A comparison of a diamond detector, MOSFET, TLD, and scintillation detector

Jamil Lambert; T Nakano; Sue Law; Justin Elsey; David R. McKenzie; Natalka Suchowerska

The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.


Physics in Medicine and Biology | 2006

A plastic scintillation dosimeter for high dose rate brachytherapy.

Jamil Lambert; David R. McKenzie; Susan Law; Justin Elsey; Natalka Suchowerska

In vivo dose verification in brachytherapy requires a small insertable dosimeter with a real-time readout capability. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are one of the most promising dosimeters for this application. We have developed two sizes of the BrachyFOD scintillation dosimeter which have external diameters of 2.2 mm and 1 mm and have determined their important dosimetric characteristics (depth dose relation, angular dependence, temperature dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries using an (192)Ir source from an HDR brachytherapy unit. The dosimeter design enables readout at less than 0.5 s intervals. The BrachyFOD satisfies the need for a real-time in vivo brachytherapy dosimeter.


Physics in Medicine and Biology | 2008

Cerenkov-free scintillation dosimetry in external beam radiotherapy with an air core light guide

Jamil Lambert; Yongbai Yin; David R. McKenzie; Susan Law; Natalka Suchowerska

Plastic scintillators have many advantages for dosimetry in external beam radiotherapy. The current method of transmitting the scintillation light to a remote detector is through a solid core optical fibre. When exposed in a high energy therapeutic radiotherapy beam this fibre is subject to an unwanted background signal from Cerenkov light which can exceed the scintillation signal at characteristic angles. We have constructed a plastic scintillation dosimeter that uses an air core light guide to transport the light from the scintillator to the light detector. We show that there is sufficient signal propagation in the air core light guide to allow the scintillator signal to be carried outside the primary beam of a radiotherapy linear accelerator and for a dosimeter to be constructed using a scintillator inserted into the end of the light guide. Studies of the background light generated in the air core light guide, as a function of the angle between the beam and the fibre axis, show that there is no characteristic Cerenkov peak generated in the air core. Depth dose measurements using the air core scintillation dosimeter with no correction for Cerenkov are compared to ionization chamber measurements for a 6 MV photon beam and a 9 MeV electron beam.


Physics in Medicine and Biology | 2005

Intrafractional motion during proton beam scanning

Jamil Lambert; Natalka Suchowerska; David R. McKenzie; Michael Jackson

Patient and internal organ motion during treatment with a scanned proton beam can introduce unplanned heterogeneities in the dose distribution throughout the irradiated volume. With static beam techniques, a margin around the target volume is added to compensate for patient and organ motion. This margin may not provide the solution with dynamic beam scanning. Intrafractional motion parallel and perpendicular to the beam axis is studied using two different scanning methods on a cubic water phantom. The direction of motion relative to the beam scanning direction as well as the method of scanning the proton beam across the target has a significant effect on the resulting dose distribution within the target volume. In the extreme cases studied here up to 100% of the target receives a dose outside the recommended limits, with a minimum dose as low as 34% of the prescribed dose.


Physics in Medicine and Biology | 2011

Plastic scintillation dosimetry: comparison of three solutions for the Cerenkov challenge

Paul Liu; Natalka Suchowerska; Jamil Lambert; P Abolfathi; David R. McKenzie

In scintillation dosimetry, a Cerenkov background signal is generated when a conventional fibre optic is exposed to radiation produced by a megavoltage linear accelerator. Three methods of measuring dose in the presence of Cerenkov background are compared. In the first method, a second background fibre is used to estimate the Cerenkov signal in the signal fibre. In the second method, a colour camera is used to measure the combined scintillation and Cerenkov light in two wavelength ranges and a mathematical process is used to extract the scintillation signal. In the third method, a hollow air core light guide is used to carry the scintillation signal through the primary radiation field. In this paper, the strengths and weaknesses of each dosimetry system are identified and recommendations for the optimum method for common clinical dosimetry situations are made.


Physics in Medicine and Biology | 2010

A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields

Jamil Lambert; Yongbai Yin; David R. McKenzie; Susan H. Law; Anna Ralston; Natalka Suchowerska

A prototype plastic scintillation dosimeter has been developed with a small sensitive volume, rapid response and good dosimetric performance. The novelty of this design is the use of an air core light guide to transport the scintillation signal out of the primary radiation field. The significance of this innovation is that it eliminates the Cerenkov background signal that is generated in conventional optical fibres. The dosimeter performance was compared to existing commercial dosimeters in 6 MV and 18 MV photon beams and 6 MeV and 20 MeV electron beams, in both static and dynamic fields. The dosimeter was tested in small static fields and in dynamically delivered fields where the detector volume is shielded, while the stem is irradiated. The depth dose measurements for the photon beams agreed with ionization chamber measurements to within 1.6%, except in the build-up region due to positional uncertainty. For the 6 MeV and 20 MeV electron beams, the percentage depth dose measurements agreed with the ionization chamber measurements to within 3.6% and 4.5%, respectively. For field sizes of 1 cm x 1 cm and greater, the air core dosimeter readings agreed with diamond detector readings to within 1.2%. The air core dosimeter was accurate in dynamically delivered fields and had no measurable stem effect. The air core dosimeter was accurate over a range of field sizes, energies and dose rates, confirming that it is a sensitive and accurate dosimeter with high spatial resolution suitable for use in megavoltage photon and electron beams.


International Journal of Radiation Oncology Biology Physics | 2011

Clinical Trials of a Urethral Dose Measurement System in Brachytherapy Using Scintillation Detectors

Natalka Suchowerska; Michael Jackson; Jamil Lambert; Yong Bai Yin; George Hruby; David R. McKenzie

PURPOSE To report on the clinical feasibility of a novel scintillation detector system with fiberoptic readout that measures the urethral dose during high-dose-rate brachytherapy treatment of the prostate. METHODS AND MATERIALS The clinical trial enrolled 24 patients receiving high-dose-rate brachytherapy treatment to the prostate. After the first 14 patients, three improvements were made to the dosimeter system design to improve clinical reliability: a dosimeter self-checking facility; a radiopaque marker to determine the position of the dosimeter, and a more robust optical extension fiber. RESULTS Improvements to the system design allowed for accurate dose measurements to be made in vivo. A maximum measured dose departure of 9% from the calculated dose was observed after dosimeter design improvements. CONCLUSIONS Departures of the measured from the calculated dose, after improvements to the dosimetry system, arise primarily from small changes in patient anatomy. Therefore, we recommend that patient response be correlated with the measured in vivo dose rather than with the calculated dose.


Medical Physics | 2010

Dose mapping of the rectal wall during brachytherapy with an array of scintillation dosimeters

L. E. Cartwright; Natalka Suchowerska; Yongbai Yin; Jamil Lambert; Mamoon Haque; David R. McKenzie

PURPOSE In pelvic brachytherapy treatments, the rectum is an organ at risk. The authors have developed an array of scintillation dosimeters suitable for in vivo use that enables quality assurance of the treatment delivery and provides an alert to potential radiation accidents. Ultimately, this will provide evidence to direct treatment planning and dose escalation and correlate dose with the rectal response. METHODS An array of 16 scintillation dosimeters in an insertable applicator has been developed. The dosimeters were calibrated simultaneously in a custom designed circular jig before use. Each dosimeter is optically interfaced to a set of pixels on a CCD camera located outside the treatment bunker. A customized software converts pixel values into dose rate and accumulates dose for presentation during treatment delivery. The performance of the array is tested by simulating brachytherapy treatments in a water phantom. The treatment plans were designed to deliver a known dose distribution on the surface of the rectal applicator, assumed to represent the dose to the rectal wall. RESULTS The measured doses were compared to those predicted by the treatment plan and found to be in agreement to within the uncertainty in measurement, usually within 3%. The array was also used to track the progression of the source as it moved along the catheter. The measured position was found to agree with the position reported by the afterloader to within the measurement uncertainty, usually within 2 mm. CONCLUSIONS This array is capable of measuring the actual dose received by each region of the rectal wall during brachytherapy treatments. It will provide real time monitoring of treatment delivery and raise an alert to a potential radiation accident. Real time dose mapping in the clinical environment will give the clinician additional confidence to carry out dose escalation to the tumor volume while avoiding rectal side effects.


Applied Optics | 2009

Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

Jamil Lambert; Yongbai Yin; David R. McKenzie; Sue Law; Natalka Suchowerska

A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.


Applied Optics | 2007

Optimal coupling of light from a cylindrical scintillator into an optical fiber.

Justin Elsey; David R. McKenzie; Jamil Lambert; Natalka Suchowerska; Sue L. Law; Simon Fleming

Radiation dose measurements based on scintillator detection are conveniently made by coupling the light from the scintillator into an optical fiber. The low light levels involved typically require sensitive photodetectors, so it is advantageous to increase the available signal by optimizing the optical coupling efficiency between the scintillator and optical fiber. We model this process using geometric optics and finite-element ray tracing to determine the features that maximize the amount of light coupled to an optical fiber from a cylindrical scintillator. We also address whether the coupling can be improved by using an intermediate optical element such as a lens, and we provide a means for calculating its required optical properties for a given geometry.

Collaboration


Dive into the Jamil Lambert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T Nakano

University of Sydney

View shared research outputs
Top Co-Authors

Avatar

Michael Jackson

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Ralston

Royal Prince Alfred Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge