Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamile F. Gonçalves is active.

Publication


Featured researches published by Jamile F. Gonçalves.


Chemico-Biological Interactions | 2010

N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium

Jamile F. Gonçalves; Amanda Maino Fiorenza; Roselia Maria Spanevello; Cinthia M. Mazzanti; Guilherme Vargas Bochi; Fabiane G. Antes; Naiara Stefanello; Maribel Antonello Rubin; Valderi L. Dressler; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

The present study investigated the effect of the administration of N-acetylcysteine (NAC), on memory, on acetylcholinesterase (AChE) activity and on lipid peroxidation in different brain structures in cadmium (Cd)-exposed rats. The rats received Cd (2 mg/kg) and NAC (150 mg/kg) by gavage every other day for 30 days. The animals were divided into four groups (n=12-13): control/saline, NAC, Cd, and Cd/NAC. The results showed a decrease in step-down latency in the Cd-group, but NAC reversed the impairment of memory induced by Cd intoxication. Rats exposed to Cd and/or treated with NAC did not demonstrate altered shock sensitivity. Decreased AChE activity was found in hippocampus, cerebellum and hypothalamus in the Cd-group but NAC reversed this effect totally or partially while in cortex synaptosomes and striatum there was no alteration in AChE activity. An increase in TBARS levels was found in hippocampus, cerebellum and hypothalamus in the Cd-group and NAC abolished this effect while in striatum there was no alteration in TBARS levels. Urea and creatinine levels were increased in serum of Cd-intoxicated rats, but NAC was able to abolish these undesirable effects. The present findings show that treatment with NAC prevented the Cd-mediated decrease in AChE activity, as well as oxidative stress and consequent memory impairment in Cd-exposed rats, demonstrating that this compound may modulate cholinergic neurotransmission and consequently improve cognition. However, it is necessary to note that the mild renal failure may be a contributor to the behavioral impairment found in this investigation.


Plant Physiology and Biochemistry | 2009

Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions

Jamile F. Gonçalves; Fabiane G. Antes; Joseila Maldaner; Luciane Belmonte Pereira; Luciane Almeri Tabaldi; Renata Rauber; Liana Veronica Rossato; Valderi L. Dressler; Erico M.M. Flores; Fernando Teixeira Nicoloso

In order to evaluate the effect of cadmium (Cd(2+)) toxicity on mineral nutrient accumulation in potato (Solanum tuberosum L.), two cultivars named Asterix and Macaca were cultivated both in vitro and in hydroponic experiments under increasing levels of Cd(2+) (0, 100, 200, 300, 400 and 500 microM in vitro and 0, 50, 100, 150 and 200 microM in hydroponic culture). At 22 and 7 days of exposure to Cd(2+), for the in vitro and hydroponic experiment, respectively, the plantlets were separated into roots and shoot, which were analyzed for biomass as well as Cd(2+), and macro (Ca(2+), K(+) and Mg(2+)) and micronutrient (Cu(2+), Fe(2+), Mn(2+) and Zn(2+)) contents. In the hydroponic experiment, there was no reduction in shoot and root dry weight for any Cd(2+) level, regardless of the potato cultivar. In contrast, in the in vitro experiment, there was an increase in biomass at low Cd(2+) levels, while higher Cd(2+) levels caused a decrease. In general, Cd(2+) decreased the macronutrient and micronutrient contents in the in vitro cultured plantlets in both roots and shoot of cultivars. In contrast, the macronutrient and micronutrient contents in the hydroponically grown plantlets were generally not affected by Cd(2+). Our data suggest that the influence of Cd(2+) on nutrient content in potato was related to the level of Cd(2+) in the substrate, potato cultivar, plant organ, essential element, growth medium and exposure time.


Brazilian Journal of Plant Physiology | 2007

Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings

Jamile F. Gonçalves; Alexssandro Geferson Becker; Denise Cargnelutti; Luciane Almeri Tabaldi; Luciane Belmonte Pereira; Vanessa Battisti; Roselia Maria Spanevello; Vera Maria Morsch; Fernando Teixeira Nicoloso; Maria Rosa Chitolina Schetinger

In this study, the effects of cadmium (Cd) on lipid peroxidation, electrolyte leakage, protein oxidation, ascorbate peroxidase (APX; E.C. 1.11.1.11), catalase (CAT; E.C. 1.11.1.6) and superoxide dismutase (SOD; E.C. 1.15.1.1) activities, and ascorbic acid, non-protein thiol groups and total soluble protein contents in cucumber seedlings (Cucumis sativus L.) were investigated. Seedlings were grown in vitro in an agar-solidified substrate containing four Cd levels as CdCl2 (0, 100, 400, and 1000 µmol L-1) for 10 d. The lowest Cd level decreased the malondialdehyde concentration. Electrolyte leakage increased only at 1000 µmol Cd L-1, whereas protein oxidation and total soluble protein content were enhanced at 400 and 1000 µmol Cd L-1. Activity of APX was inhibited while the activities of CAT and SOD were increased at all Cd concentrations. Ascorbic acid was enhanced at 400 and 1000 µmol Cd L-1 whereas non-protein thiol groups were increased at all Cd supplies. The results evidence the importance of the enzymatic and non-enzymatic antioxidant system in response to cadmium toxicity in cucumber seedlings.


Food and Chemical Toxicology | 2012

Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes

Jamile F. Gonçalves; Fernando Teixeira Nicoloso; Pauline da Costa; Júlia Gomes Farias; Fabiano B. Carvalho; Michelle Melgarejo da Rosa; Jessié M. Gutierres; Fátima H. Abdalla; Juliana S.F. Pereira; Glaecir Roseni Mundstock Dias; Nilda Vargas Barbosa; Valderi L. Dressler; Maribel Antonello Rubin; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

This study investigated the cadmium (Cd) intoxication on cognitive, motor and anxiety performance of rats subjected to long-term exposure to diet with Cd salt or with Cd from contaminated potato tubers. Potato plantlets were micropropagated in MS medium and transplanted to plastic trays containing sand. Tubers were collected, planted in sand boxes and cultivated with 0 or 10 μM Cd and, after were oven-dried, powder processed and used for diet. Rats were divided into six groups and fed different diets for 5 months: control, potato, potato+Cd, 1, 5 or 25 mg/kg CdCl2. Cd exposure increased Cd concentration in brain regions. There was a significant decrease in the step-down latency in Cd-intoxicated rats and, elevated plus maze task revealed an anxiolytic effect in rats fed potato diet per se, and an anxiogenic effect in rats fed 25 mg/kg Cd. The brain structures of rats exposed to Cd salt or Cd from tubers showed an increased AChE activity, but Na+,K+-ATPase decreased in cortex, hypothalamus, and cerebellum. Therefore, we suggest an association between the long-term diet of potato tuber and a clear anxiolytic effect. Moreover, we observed an impaired cognition and enhanced anxiety-like behavior displayed by Cd-intoxicated rats coupled with a marked increase of brain Cd concentration, and increase and decrease of AChE and Na+,K+-ATPase activities, respectively.


Biomedicine & Pharmacotherapy | 2011

Oxidative stress and antioxidant status in prostate cancer patients: Relation to Gleason score, treatment and bone metastasis

Vanessa Battisti; Liési D.K. Maders; Margarete Dulce Bagatini; Luiz Gustavo Brenner Reetz; Juarez Chiesa; Iara E. Battisti; Jamile F. Gonçalves; Marta M.M.F. Duarte; Maria Rosa Chitolina Schetinger; Vera Maria Morsch

Over the last decade, epidemiological, experimental and clinical studies have implicated oxidative stress in the development and progression of prostate cancer. In the present study, we evaluated the oxidative status and antioxidant defense in patients with prostate cancer (PCa) taking into consideration: treatment, Gleason score and bone metastasis. For this, we measured concentrations of plasmatic thiobarbituric acid reactive substances (TBARS), serum protein carbonylation, whole blood catalase (CAT) and superoxide dismutase (SOD) activities, as well as the plasma and erythrocyte thiol levels and serum vitamin C and E concentration. This study was performed on 55 patients with PCa and 55 healthy men. TBARS levels and serum protein carbonylation were higher in PCa patients than in controls and altered levels of antioxidants were found in these patients. CAT activity was decreased and SOD activity was higher in PCa patients when compared with controls. Non-protein thiol levels were increased, however, serum vitamin C and vitamin E content were reduced in PCa patients when compared with controls. In addition, different parameters analyzed in PCa patients based on metastasis, treatment and Gleason score showed changes in oxidative stress biomarkers and antioxidant defenses. These findings may indicate an imbalance in the oxidant/antioxidant status, supporting the idea that oxidative stress plays a role in PCa, moreover, the oxidative profile appear to be modified by bone metastasis, treatment and Gleason score.


Chemosphere | 2009

Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets.

Luciane Almeri Tabaldi; Denise Cargnelutti; Jamile F. Gonçalves; Luciane Belmonte Pereira; Gabriel Y Castro; Joseila Maldaner; Renata Rauber; Liana Veronica Rossato; Maria Rosa Chitolina Schetinger; Fernando Teixeira Nicoloso

The objective of this study was to evaluate whether the oxidative stress caused by aluminum (Al) toxicity is an early symptom that can trigger root growth inhibition in Macaca (Al-sensitive) and SMIC148-A (Al-tolerant) potato clones. Plantlets were grown in a nutrient solution (pH 4.00) with 0, 100 and 200mg Al L(-1). At 24, 72, 120 and 168h after Al addition, root length and biochemical parameters were determined. Regardless of exposure time, root length of the Macaca clone was significantly lower at 200mg Al L(-1). For the SMIC148-A clone, root length did not decrease with any Al treatments. Al supply caused lipid peroxidation only in Macaca, in both roots (at 24, 72, 120 and 168h) and shoot (at 120 and 168h). In roots of the Macaca, catalase (CAT) and ascorbate peroxidase (APX) activity decreased at 72 and 120h, and at 24, 72 and 120h, respectively. At 168h, both activities increased upon addition of Al. In roots of the SMIC148-A, CAT activity increased at 72 and 168h, whereas APX activity decreased at 72h and increased at 24, 12 and 168h. The Macaca showed lower root non-protein thiol group (NPSH) concentration at 200mg Al L(-1) in all evaluations, but the SMIC148-A either did not demonstrate any alterations at 24 and 72h or presented higher levels at 120h. This pattern was also observed in root ascorbic acid (AsA) concentration at 24 and 120h. The cellular redox status of these potato clones seems to be affected by Al. Therefore, oxidative stress may be an important mechanism for Al toxicity, mainly in the Al-sensitive Macaca clone.


Physiology & Behavior | 2014

Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na+,K+-ATPase activities

Fátima H. Abdalla; Roberta Schmatz; Andréia Machado Cardoso; Fabiano B. Carvalho; Jucimara Baldissarelli; Juliane Sorraila de Oliveira; Michelle Melgarejo da Rosa; Matheus A.G. Nunes; Maribel Antonello Rubin; Ivana Beatrice Mânica da Cruz; Fernanda Barbisan; Valderi L. Dressler; Luciane Belmonte Pereira; Maria Rosa Chitolina Schetinger; Vera Maria Morsch; Jamile F. Gonçalves; Cinthia M. Mazzanti

The present study investigated the effects of quercetin in the impairment of memory and anxiogenic-like behavior induced by cadmium (Cd) exposure. We also investigated possible alterations in acetylcholinesterase (AChE), Na(+),K(+)-ATPase and δ-aminolevulinate dehydratase (δ-ALA-D) activities as well as in oxidative stress parameters in the CNS. Rats were exposed to Cd (2.5mg/kg) and quercetin (5, 25 or 50mg/kg) by gavage for 45days. Animals were divided into eight groups (n=10-14): saline/control, saline/Querc 5mg/kg, saline/Querc 25mg/kg, saline/Querc 50mg/kg, Cd/ethanol, Cd/Querc 5mg/kg, Cd/Querc 25mg/kg and Cd/Querc 50mg/kg. Results demonstrated that Cd impaired memory has an anxiogenic effect. Quercetin prevented these harmful effects induced by Cd. AChE activity decreased in the cerebral cortex and hippocampus and increased in the hypothalamus of Cd-exposed rats. The Na(+),K(+)-ATPase activity decreased in the cerebral cortex, hippocampus and hypothalamus of Cd-exposed rats. Quercetin prevented these effects in AChE and Na(+),K(+)-ATPase activities. Reactive oxygen species production, thiobarbituric acid reactive substance levels, protein carbonyl content and double-stranded DNA fractions increased in the cerebral cortex, hippocampus and hypothalamus of Cd-exposed rats. Quercetin totally or partially prevents these effects caused by Cd. Total thiols (T-SHs), reduced glutathione (GSH), and reductase glutathione (GR) activities decreased and glutathione S-transferase (GST) activity increased in Cd exposed rats. Co-treatment with quercetin prevented reduction in T-SH, GSH, and GR activities and the rise of GST activity. The present findings show that quercetin prevents alterations in oxidative stress parameters as well as AChE and Na(+),K(+)-ATPase activities, consequently preventing memory impairment and anxiogenic-like behavior displayed by Cd exposure. These results may contribute to a better understanding of the neuroprotective role of quercetin, emphasizing the influence of this flavonoid in the diet for human health, possibly preventing brain injury associated with Cd intoxication.


International Journal of Developmental Neuroscience | 2009

Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents

Cinthia Melazzo Mazzanti; Roselia Spanevello; Musthaq Ahmed; Luciane Belmonte Pereira; Jamile F. Gonçalves; Maísa Corrêa; Roberta Schmatz; Naiara Stefanello; Daniela Bitencourt Rosa Leal; Alexandre Mazzanti; Adriano Tony Ramos; Tessie Beck Martins; Cristiane Cademartori Danesi; Dominguita Lühers Graça; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

The ethidium bromide (EB) demyelinating model was associated with vitamin E (Vit E) and ebselen (Ebs) treatment to evaluate acetylcholinesterase (AChE) activity in the striatum (ST), hippocampus (HP), cerebral cortex (CC) and erythrocytes. Rats were divided into seven groups: I—Control (saline), II—(canola); III—(Ebs), IV—(Vit E); V—(EB); VI—(EB + Ebs) and VII—(EB + Vit E). At 3 days after the EB injection, AChE activity in the CC and HC was significantly reduced in groups III, IV, V, VI and VII (p < 0.05) and in the ST it was reduced in groups III and V (p < 0.05) when compared to the control group. At 21 days after the EB injection, AChE activity in the CC was significantly reduced in groups III, IV and V, while in groups VI and VII a significant increase was observed when compared to the control group. In the HC and ST, AChE activity was significantly reduced in groups V, VI and VII when compared to the control group (p < 0.05). In the erythrocytes, at 3 days after the EB injection, AChE activity was significantly reduced in groups III, IV, V, VI and VII and at 21 days there was a significant reduction only in groups VI and VII (p < 0.05) when compared to the control group. In conclusion, this study demonstrated that Ebs and Vit E interfere with the cholinergic neurotransmission by altering AChE activity in the different brain regions and in the erythrocytes. Furthermore, treatment with Vit E and Ebs protected against the demyelination lesion caused by EB. In this context, we can suggest that ebselen and Vit E should be considered potential therapeutics and scientific tools to be investigated in brain disorders associated with demyelinating events.


Plant Physiology and Biochemistry | 2010

Aluminum-induced oxidative stress in cucumber.

Luciane Belmonte Pereira; Cinthia M. Mazzanti; Jamile F. Gonçalves; Denise Cargnelutti; Luciane Almeri Tabaldi; Alexssandro Geferson Becker; Nicéia Spanholi Calgaroto; Júlia Gomes Farias; Vanessa Battisti; Denise Bohrer; Fernando Teixeira Nicoloso; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

Aluminum (Al) is one of the most abundant elements of the planet and exposure to this metal can cause oxidative stress and lead to various signs of toxicity in plants. Plants are essential organisms for the environment as well as food for humans and animals. The toxic effect of aluminum is the major cause of decreased crop productivity. Thus, the objective of the present study was to analyze the effects of aluminum on the activity of antioxidant enzymes such as catalase (CAT - E.C. 1.11.1.6), superoxide dismutase (SOD - E.C.1.15.1.1) and ascorbate peroxidase (APX - E.C. 1.11.1.11), and on lipid peroxidation, electrolyte leakage percentage (ELP) and chlorophyll and protein oxidation levels in Cucumis sativus L. (cv. Aodai). Seedlings were grown at different concentrations of aluminum ranging from 1 to 2000 microM for 10 days. The increase in ELP and H(2)O(2) production observed in the seedlings may be related to the decreased efficiency of the antioxidant system at higher aluminum concentrations. The antioxidant system was unable to overcome toxicity resulting in negative effects such as lipid peroxidation, protein oxidation and a decrease in the growth of Cucumis seedlings. Aluminum toxicity triggered alterations in the antioxidant and physiological status of growing cucumber seedlings.


Veterinary Parasitology | 2011

Acetylcholinesterase activity and lipid peroxidation in the brain and spinal cord of rats infected with Trypanosoma evansi

Aleksandro Schafer da Silva; Silvia Gonzalez Monteiro; Jamile F. Gonçalves; Roselia Maria Spanevello; Camila B. Oliveira; Márcio Machado Costa; Jeandre Augusto dos Santos Jaques; Vera Maria Morsch; Maria Rosa Chitolina Schetinger; Cinthia M. Mazzanti; Sonia Terezinha dos Anjos Lopes

Neurological and locomotor clinical signs are described in animals infected with Trypanosoma evansi. These disturbances may be related to changes in the amount of acetylcholine (neurotransmitter) in the synaptic cleft. Therefore, changes in acetylcholinesterase (AChE) activity and lipid peroxidation in brain and spinal cord of T. evansi-infected rats were investigated. Each rat was intraperitoneally infected with 10(6) trypomastigotes kept in fresh (group A; n=13) and cryopreserved blood (group B; n=13). Thirteen served as uninfected (not-infected; group C). In days 4 and 30 post-infection (PI) the rats were anesthetized and subsequently decapitated to obtain the brain and the spinal cord (between vertebrae L1 and S2). The brain was removed and dissected (cerebellum, cerebral cortex, striatum and hippocampus) to measure the activity of AChE and lipid peroxidation, determined by TBARS levels. To verify if T. evansi was present in the central nervous system (CNS), brain structures of three rats of each group were processed by PCR T. evansi-specific. AChE activity was significantly increased in all brain structures and decrease in spinal cord in infected rats in 4 PI (P<0.05). The levels of TBARS were decreased in the brain structures, differently from spinal cord, which showed increased lipid peroxidation in 4 PI. The AChE activity in striatum, cerebral cortex, hippocampus and spinal cord reduced concomitantly with the increase of the enzyme in cerebellum of the infected rats (P<0.05), and the TBARS levels increased in cerebellum, striatum and spinal cord of infected rats compared to non-infected animals in 30 PI. The PCR was positive for T. evansi in all structures of the brain, confirming the presence of the parasite in the CNS. Based on the results, we conclude that the changes in AChE activity and lipid peroxidation in the CNS are induced by infection with T. evansi, suggesting that the parasite interferes with the cholinergic neurotransmission in this experimental condition.

Collaboration


Dive into the Jamile F. Gonçalves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera Maria Morsch

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Fernando Teixeira Nicoloso

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Luciane Belmonte Pereira

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Luciane Almeri Tabaldi

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Alexssandro Geferson Becker

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Cinthia M. Mazzanti

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Denise Cargnelutti

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Roselia Maria Spanevello

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Roberta Schmatz

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge