Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Beck is active.

Publication


Featured researches published by Jan Beck.


Ecology | 2007

A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS

Bradford A. Hawkins; Fábio Suzart de Albuquerque; Miguel B. Araújo; Jan Beck; Luis Mauricio Bini; Francisco J. Cabrero-Sañudo; Isabel Castro‐Parga; José Alexandre Felizola Diniz-Filho; Dolores Ferrer-Castán; Richard Field; José F. Gómez; Joaquín Hortal; Jeremy T. Kerr; Ian J. Kitching; Jorge L. León‐Cortés; Jorge M. Lobo; Daniel Montoya; Juan Carlos Moreno; Miguel Á. Olalla-Tárraga; Juli G. Pausas; Hong Qian; Carsten Rahbek; Miguel Á. Rodríguez; Nathan J. Sanders; Paul H. Williams

We compiled 46 broadscale data sets of species richness for a wide range of terrestrial plant, invertebrate, and ectothermic vertebrate groups in all parts of the world to test the ability of metabolic theory to account for observed diversity gradients. The theory makes two related predictions: (1) In-transformed richness is linearly associated with a linear, inverse transformation of annual temperature, and (2) the slope of the relationship is near -0.65. Of the 46 data sets, 14 had no significant relationship; of the remaining 32, nine were linear, meeting prediction 1. Model I (ordinary least squares, OLS) and model II (reduced major axis, RMA) regressions then tested the linear slopes against prediction 2. In the 23 data sets having nonlinear relationships between richness and temperature, split-line regression divided the data into linear components, and regressions were done on each component to test prediction 2 for subsets of the data. Of the 46 data sets analyzed in their entirety using OLS regression, one was consistent with metabolic theory (meeting both predictions), and one was possibly consistent. Using RMA regression, no data sets were consistent. Of 67 analyses of prediction 2 using OLS regression on all linear data sets and subsets, two were consistent with the prediction, and four were possibly consistent. Using RMA regression, one was consistent (albeit weakly), and four were possibly consistent. We also found that the relationship between richness and temperature is both taxonomically and geographically conditional, and there is no evidence for a universal response of diversity to temperature. Meta-analyses confirmed significant heterogeneity in slopes among data sets, and the combined slopes across studies were significantly lower than the range of slopes predicted by metabolic theory based on both OLS and RMA regressions. We conclude that metabolic theory, as currently formulated, is a poor predictor of observed diversity gradients in most terrestrial systems.


Ecological Applications | 2014

Is there any empirical support for biodiversity offset policy

Michael Curran; Stefanie Hellweg; Jan Beck

Biodiversity offsets are seen as a policy mechanism to balance development and conservation goals. Many offset schemes employ habitat restoration in one area to recreate biodiversity value that is destroyed elsewhere, assuming that recovery is timely and predictable. Recent research has challenged these assumptions on the grounds that restoration implies long time delays and a low certainty of success. To investigate these assertions, and to assess the strength of empirical support for offset policy, we used a meta-analytic approach to analyze data from 108 comparative studies of secondary growth (SG) and old-growth (OG) habitat (a total of 1228 SG sites and 716 OG reference sites). We extracted species checklists and calculated standardized response ratios for species richness, Fishers alpha, Sorenson similarity, and Morisita-Horn similarity. We modeled diversity change with habitat age using generalized linear models and multi-model averaging, correcting for a number of potential explanatory variables. We tested whether (1) diversity of passively and actively restored habitat converges to OG values over time, (2) active restoration significantly accelerates this process, and (3) current offset policies are appropriate to the predicted uncertainties and time lags associated with restoration. The results indicate that in the best case, species richness converges to OG reference values within a century, species similarity (Sorenson) takes about twice as long, and assemblage composition (Morisita-Horn) up to an order of magnitude longer (hundreds to thousands of years). Active restoration significantly accelerates the process for all indices, but the inherently large time lags, uncertainty, and risk of restoration failure require offset ratios that far exceed what is currently applied in practice. Restoration offset policy therefore leads to a net loss of biodiversity, and represents an inappropriate use of the otherwise valuable tool of ecosystem restoration.


Ecological Informatics | 2014

Spatial bias in the GBIF database and its effect on modeling species' geographic distributions

Jan Beck; Marianne Böller; Andreas Erhardt; Wolfgang Schwanghart

Abstract Species distribution modeling, in combination with databases of specimen distribution records, is advocated as a solution to the problem of distributional data limitation in biogeography and ecology. The global biodiversity information facility (GBIF), a portal that collates digitized collection and survey data, is the largest online provider of distribution records. However, all distributional databases are spatially biassed due to uneven effort of sampling, data storage and mobilization. Such bias is particularly pronounced in GBIF, where nation-wide differences in funding and data sharing lead to huge differences in contribution to GBIF. We use a common Eurasian butterfly (Aglais urticae) as an exemplar taxon to provide evidence that range model quality is decreasing due to the spatial clustering of distributional records in GBIF. Furthermore, we show that such loss of model quality would go unnoticed with standard methods of model quality evaluation. Using evaluations of model predictions of the Swiss distribution of the species, we compare distribution models of full data with data where a subsampling procedure removes spatial bias at the cost of record numbers, but not of spatial extent of records. We show that data with less spatial bias produce better predictive models even though they are based on less input data. Our subsampling routine may therefore be a suitable method to reduce the impact of spatial bias to species distribution models. Our results warn of automatized applications of species distribution models to distributional databases (as has been advocated and implemented), as internal model evaluation did not show the decline of model quality with increased spatial bias (but rather the opposite) while expert evaluation clearly did.


Science | 2014

Comment on “High-resolution global maps of 21st-century forest cover change”

Robert Tropek; Ondřej Sedláček; Jan Beck; Petr Keil; Zuzana Musilová; Irena Šímová; David Storch

Hansen et al. (Reports, 15 November 2013, p. 850) published a high-resolution global forest map with detailed information on local forest loss and gain. We show that their product does not distinguish tropical forests from plantations and even herbaceous crops, which leads to a substantial underestimate of forest loss and compromises its value for local policy decisions.


Biodiversity and Conservation | 2006

Effects of Habitat Disturbance can be Subtle Yet Significant: Biodiversity of Hawkmoth-Assemblages (Lepidoptera: Sphingidae) in Southeast-Asia

Jan Beck; Ian J. Kitching; K. Eduard Linsenmair

Sphingid biodiversity was compared in a large number of light-trapping samples on Borneo and elsewhere in the Indo-Australian tropics, using our own quantitative light-trapping samples supplemented by other collectors’ published and unpublished data. No effects of anthropogenic habitat disturbance on the within-habitat diversity (measured as Fisher’s α) were observed, but the faunal composition of assemblages differs significantly under varying degrees of disturbance. Altitude, year of sampling and sampling regime (full night vs. part of the night) were identified as additional parameters that influence the composition of local samples. The frequency of subfamilies in samples varies under different disturbance regimes: Smerinthinae decline along a gradient from primary habitats to heavily disturbed sites, while Macroglossinae show the reverse trend. Connections between the reactions of subfamilies to disturbance and altitude and potential life-history differences between the subfamilies are discussed. Hypothetically, capital breeding Smerinthinae might be commoner and more speciose in stable primary habitats, whereas many income breeding Macroglossinae are probably adapted to thrive in ephemeral, disturbed habitats. Furthermore, we show that estimates from local samples fall short of the total known species richness of Borneo by about 10%.


Climatic Change | 2013

Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses?

Jan Beck

The susceptibility of agriculture to changing environmental conditions is arguably the most dangerous short-term consequence of climate change, and predictions on the geography of changes will be useful for implementing mitigation strategies. Ecological niche modeling (ENM) is a technique used to relate presence records of species to environmental variables. By extrapolation, ENM maps the suitability of a landscape for the species in question. Recently, ENM was successfully applied to predict the geographic distribution of agriculture. Using climate and soil conditions as predictor variables, agricultural suitability was mapped across the Old World. Here, I present analogous ENM-based maps of the suitability for agriculture under climate change scenarios for the year 2050. Deviations of predicted scenarios from a current conditions model were analyzed by (1) comparing relative average change across regions, and (2) by relating country-wide changes to the data indicative of the wealth of nations. The findings indicate that different regions vary considerably in whether they win or lose in agricultural suitability, even if average change across the entire study region is small. A positive relationship between the wealth of nations and change in agriculture conditions was found, but variability around this trend was high. Parts of Africa, Europe and southern and eastern Asia were predicted to be particularly negatively affected, while north-eastern Europe, among other regions, can expect more favorable conditions for agriculture. The results are presented as an independent “second opinion” to previously published, more complex forecasts on agricultural productivity and food supply variability due to climatic change, which were based on fitting environmental variables to yield statistics.


Oecologia | 2007

The importance of amino acids in the adult diet of male tropical rainforest butterflies

Jan Beck

Adult diet is a major factor contributing to life history variation in the Lepidoptera. Amino acids derived from adult feeding, in particular, are suspected to be a major contribution to fitness, but this could be proven in only few species so far. Effects of amino acids in the diet of butterflies were experimentally investigated in 13 species from a Borneo rainforest community (using caged males without mating opportunity). Four species lived substantially longer when given a mix of amino acids additionally to water, sodium and sugar solutions. No significant phylogenetic pattern was found for effects of amino acid feeding, although none of six pierid species were among the taxa with significant effects. Species that do react to amino acids tend to be among the most long-lived taxa in the community, suggesting that amino acids are a key variable to attain long life spans. Weaker effects, or impacts on other fitness-related variables, cannot be excluded in the remaining taxa. Results indicate that adult amino acid intake may not be a rare strategy of few exotic taxa, but is, at least in non-seasonal tropical regions, a common life history trait in a substantial number of butterfly species.


The American Naturalist | 2012

Diversity partitioning confirms the importance of beta components in tropical rainforest Lepidoptera.

Jan Beck; Jeremy D. Holloway; Chey Vun Khen; Ian J. Kitching

Tropical beta diversity, and particularly that of herbivorous insects in rainforests, is often considered to be enormous, but this notion has recently been challenged. Because tropical beta diversity is highly relevant to our view on biodiversity, it is important to gain more insights and to resolve methodological problems that may lead to contradictions in different studies. We used data on two ecologically distinct moth families from Southeast Asia and analyzed separately the contribution of beta components to overall species richness at three spatial scales. Observed diversity partitions were compared under different types of null models. We found that alpha diversity was lower than expected on the basis of null models, whereas hierarchical beta components were larger than expected. Beta components played a significant role in shaping gamma diversity, and their contribution can be high (multiplicative beta >5). We found a reduction in beta components when comparing primary forests to agricultural sites (cf. “biotic homogenization”), but even in these habitats, beta components were still substantial. Our analyses show that beta components do play an important role in our data on tropical herbivorous insects and that these results are not attributable to lumping different habitats when sampling environmental gradients.


PLOS ONE | 2010

Is the Spatial Distribution of Mankind's Most Basic Economic Traits Determined by Climate and Soil Alone?

Jan Beck; Andrea Sieber

Background Several authors, most prominently Jared Diamond (1997, Guns, Germs and Steel), have investigated biogeographic determinants of human history and civilization. The timing of the transition to an agricultural lifestyle, associated with steep population growth and consequent societal change, has been suggested to be affected by the availability of suitable organisms for domestication. These factors were shown to quantitatively explain some of the current global inequalities of economy and political power. Here, we advance this approach one step further by looking at climate and soil as sole determining factors. Methodology/Principal Findings As a simplistic ‘null model’, we assume that only climate and soil conditions affect the suitability of four basic landuse types – agriculture, sedentary animal husbandry, nomadic pastoralism and hunting-and-gathering. Using ecological niche modelling (ENM), we derive spatial predictions of the suitability for these four landuse traits and apply these to the Old World and Australia. We explore two aspects of the properties of these predictions, conflict potential and population density. In a calculation of overlap of landuse suitability, we map regions of potential conflict between landuse types. Results are congruent with a number of real, present or historical, regions of conflict between ethnic groups associated with different landuse traditions. Furthermore, we found that our model of agricultural suitability explains a considerable portion of population density variability. We mapped residuals from this correlation, finding geographically highly structured deviations that invite further investigation. We also found that ENM of agricultural suitability correlates with a metric of local wealth generation (Gross Domestic Product, Purchasing Power Parity). Conclusions/Significance From simplified assumptions on the links between climate, soil and landuse we are able to provide good predictions on complex features of human geography. The spatial distribution of deviations from ENM predictions identifies those regions requiring further investigation of potential explanations. Our findings and methodological approaches may be of applied interest, e.g., in the context of climate change.


Biodiversity and Conservation | 2013

Effects of experimentally planting non-crop flowers into cabbage fields on the abundance and diversity of predators

Nadine Ditner; Oliver Balmer; Jan Beck; Theo Blick; Peter Nagel; Henryk Luka

Flowery field margins and intersowing of crops with flowers are used as management practices to promote arthropod biodiversity as well as biocontrol agents. Positive effects of enhancement (in abundance and species richness) of hymenopteran parasitoids on control of Lepidoptera pests have previously been demonstrated. However, effects on predatory arthropods, which may also serve as pest control agents, remain unclear. In an experimental study in cabbage fields we tested how sown flower strips on field margins and intersowing with cornflower affected the species richness, abundance and community composition of ground beetles and spiders. Furthermore, we investigated whether effects of flower margins are dependent on the distance from the field margins. We found that field margins generally harboured higher species richness, whereas effects on abundance were weaker. Intersown cornflower had positive effects on spider and ground beetle abundance, but affected species richness only weakly. Our results do not provide evidence for effects of distance from the flowery field margins on predator richness or abundance. Species composition was strongly affected by the habitat management actions. We conclude that habitat management practices like flower strips on field margins and intersowing with flowers, which are primarily added to attract and enhance parasitoids for pest control, also benefit biodiversity conservation in spiders and ground beetles. They also positively affect the abundance of these primarily predatory taxa, which adds to the biocontrol potential of non-crop flowering plants.

Collaboration


Dive into the Jan Beck's collaboration.

Top Co-Authors

Avatar

Ian J. Kitching

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Kreft

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Florian Altermatt

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge