Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Bernard C. Marsman is active.

Publication


Featured researches published by Jan-Bernard C. Marsman.


Journal of Vision | 2009

Multivoxel fMRI analysis of color tuning in human primary visual cortex

Laura M. Parkes; Jan-Bernard C. Marsman; D. C. Oxley; John Yannis Goulermas; Sophie M. Wuerger

We use multivoxel pattern analysis (MVPA) to study the spatial clustering of color-selective neurons in the human brain. Our main objective was to investigate whether MVPA reveals the spatial arrangements of color-selective neurons in human primary visual cortex (V1). We measured the distributed fMRI activation patterns for different color stimuli (Experiment 1: cardinal colors (to which the LGN is known to be tuned), Experiment 2: perceptual hues) in V1. Our two main findings were that (i) cone-opponent cardinal color modulations produce highly reproducible patterns of activity in V1, but these were not unique to each color. This suggests that V1 neurons with tuning characteristics similar to those found in LGN are not spatially clustered. (ii) Unique activation patterns for perceptual hues in V1 support current evidence for a spatially clustered hue map. We believe that our work is the first to show evidence of spatial clustering of neurons with similar color preferences in human V1.


Psychological Science | 2014

Filling the Gap: Relationship Between the Serotonin-Transporter-Linked Polymorphic Region and Amygdala Activation

Jojanneke A. Bastiaansen; Michelle N. Servaas; Jan-Bernard C. Marsman; Johan Ormel; Ilja M. Nolte; Harriette Riese; André Aleman

The alleged association between the serotonin-transporter-linked polymorphic region (5-HTTLPR) and amygdala activation forms a cornerstone of the common view that carrying the short allele of this polymorphism is a potential risk factor for affective disorders. The authors of a recent meta-analysis showed that this association is statistically significant (Hedges’s g = 0.35) but warned that estimates might be distorted because of publication bias. Here, we report a replication study of this relationship in 120 participants. We failed to find an association of 5-HTTLPR variation with amygdala activation during a widely used emotional-face-matching paradigm. Moreover, when we conducted a meta-analysis that included unpublished studies and data from the current study, the pooled meta-analytic effect size was no longer significant (g = 0.20, p = .06). These findings cast doubt on previously reported substantial effects, suggesting that the 5-HTTLPR–amygdala association is either much smaller than previously thought, conditional on other factors, or nonexistent.


Psychological Medicine | 2011

Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study

L. R. Demenescu; Remco Renken; Rudie Kortekaas; van Marie Jose Tol; Jan-Bernard C. Marsman; M.A. van Buchem; N.J.A. van der Wee; D.J. Veltman; den Johan Boer; André Aleman

BACKGROUND Depression has been associated with limbic hyperactivation and frontal hypoactivation in response to negative facial stimuli. Anxiety disorders have also been associated with increased activation of emotional structures such as the amygdala and insula. This study examined to what extent activation of brain regions involved in perception of emotional faces is specific to depression and anxiety disorders in a large community-based sample of out-patients. METHOD An event-related functional magnetic resonance imaging (fMRI) paradigm was used including angry, fearful, sad, happy and neutral facial expressions. One hundred and eighty-two out-patients (59 depressed, 57 anxiety and 66 co-morbid depression-anxiety) and 56 healthy controls selected from the Netherlands Study of Depression and Anxiety (NESDA) were included in the present study. Whole-brain analyses were conducted. The temporal profile of amygdala activation was also investigated. RESULTS Facial expressions activated the amygdala and fusiform gyrus in depressed patients with or without anxiety and in healthy controls, relative to scrambled faces, but this was less evident in patients with anxiety disorders. The response shape of the amygdala did not differ between groups. Depressed patients showed dorsolateral prefrontal cortex (PFC) hyperactivation in response to happy faces compared to healthy controls. CONCLUSIONS We suggest that stronger frontal activation to happy faces in depressed patients may reflect increased demands on effortful emotion regulation processes triggered by mood-incongruent stimuli. The lack of strong differences in neural activation to negative emotional faces, relative to healthy controls, may be characteristic of the mild-to-moderate severity of illness in this sample and may be indicative of a certain cognitive-emotional processing reserve.


Neuropsychopharmacology | 2015

Connectomics and neuroticism: an altered functional network organization

Michelle N. Servaas; Linda Geerligs; Remco Renken; Jan-Bernard C. Marsman; Johan Ormel; Harriette Riese; André Aleman

The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the ‘neurotic brain’ has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.


Neuroscience & Biobehavioral Reviews | 2016

Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

Claire Kos; Marie-José van Tol; Jan-Bernard C. Marsman; André Aleman

Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution.


Brain Behavior and Immunity | 2016

Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder - A combined magnetic resonance imaging and positron emission tomography study

Bartholomeus C.M. (‘Benno’) Haarman; Huibert Burger; Janine Doorduin; Remco Renken; Anita Sibeijn-Kuiper; Jan-Bernard C. Marsman; Erik F. J. de Vries; Jan Cees de Groot; Hemmo A. Drexhage; Richard Mendes; Willem A. Nolen; Rixt F. Riemersma-van der Lek

BACKGROUND The hippocampus is one of the brain regions that is involved in several pathophysiological theories about bipolar disorder (BD), such as the neuroinflammation theory and the corticolimbic metabolic dysregulation theory. We compared hippocampal volume and hippocampal metabolites in bipolar I disorder (BD-I) patients versus healthy controls (HCs) with magnetic resonance imaging (MRI) and spectroscopy (MRS). We post hoc investigated whether hippocampal volume and hippocampal metabolites were associated with microglial activation and explored if potential illness modifying factors affected these hippocampal measurements and whether these were associated with experienced mood and functioning. MATERIALS AND METHODS Twenty-two BD-I patients and twenty-four HCs were included in the analyses. All subjects underwent psychiatric interviews as well as an MRI scan, including a T1 scan and PRESS magnetic resonance spectroscopy (MRS). Volumetric analysis was performed with Freesurfer. MRS quantification was performed with LC Model. A subgroup of 14 patients and 11 HCs also underwent a successful [(11)C]-(R)-PK11195 neuroinflammation positron emission tomography scan. RESULTS In contrast to our hypothesis, hippocampal volumes were not decreased in patients compared to HC after correcting for individual whole-brain volume variations. We demonstrated decreased N-acetylaspartate (NAA)+N-acetyl-aspartyl-glutamate (NAAG) and creatine (Cr)+phosphocreatine (PCr) concentrations in the left hippocampus. In the explorative analyses in the left hippocampus we identified positive associations between microglial activation and the NAA+NAAG concentration, between alcohol use and NAA+NAAG concentration, between microglial activation and the depression score and a negative relation between Cr+PCr concentration and experienced occupational disability. Duration of illness associated positively with volume bilaterally. CONCLUSION Compared to HCs, the decreased NAA+NAAG concentration in the left hippocampus of BD-I patients suggests a decreased neuronal integrity in this region. In addition we found a positive relation between microglial activation and neuronal integrity in vivo, corresponding to a differentiated microglial function where some microglia induce apoptosis while others stimulate neurogenesis.


PLOS ONE | 2013

The Effect of Criticism on Functional Brain Connectivity and Associations with Neuroticism

Michelle N. Servaas; Harriette Riese; Remco Renken; Jan-Bernard C. Marsman; Johan Lambregs; Johan Ormel; André Aleman

Neuroticism is a robust personality trait that constitutes a risk factor for psychopathology, especially anxiety disorders and depression. High neurotic individuals tend to be more self-critical and are overly sensitive to criticism by others. Hence, we used a novel resting-state paradigm to investigate the effect of criticism on functional brain connectivity and associations with neuroticism. Forty-eight participants completed the NEO Personality Inventory Revised (NEO-PI-R) to assess neuroticism. Next, we recorded resting state functional magnetic resonance imaging (rsfMRI) during two sessions. We manipulated the second session before scanning by presenting three standardized critical remarks through headphones, in which the subject was urged to please lie still in the scanner. A seed-based functional connectivity method and subsequent clustering were used to analyse the resting state data. Based on the reviewed literature related to criticism, we selected brain regions associated with self-reflective processing and stress-regulation as regions of interest. The findings showed enhanced functional connectivity between the clustered seed regions and brain areas involved in emotion processing and social cognition during the processing of criticism. Concurrently, functional connectivity was reduced between these clusters and brain structures related to the default mode network and higher-order cognitive control. Furthermore, individuals scoring higher on neuroticism showed altered functional connectivity between the clustered seed regions and brain areas involved in the appraisal, expression and regulation of negative emotions. These results may suggest that the criticized person is attempting to understand the beliefs, perceptions and feelings of the critic in order to facilitate flexible and adaptive social behavior. Furthermore, multiple aspects of emotion processing were found to be affected in individuals scoring higher on neuroticism during the processing of criticism, which may increase their sensitivity to negative social-evaluation.


Cognitive Computation | 2011

An Image Statistics–Based Model for Fixation Prediction

Victoria Yanulevskaya; Jan-Bernard C. Marsman; Frans W. Cornelissen; Jan-Mark Geusebroek

The problem of predicting where people look at, or equivalently salient region detection, has been related to the statistics of several types of low-level image features. Among these features, contrast and edge information seem to have the highest correlation with the fixation locations. The contrast distribution of natural images can be adequately characterized using a two-parameter Weibull distribution. This distribution catches the structure of local contrast and edge frequency in a highly meaningful way. We exploit these observations and investigate whether the parameters of the Weibull distribution constitute a simple model for predicting where people fixate when viewing natural images. Using a set of images with associated eye movements, we assess the joint distribution of the Weibull parameters at fixated and non-fixated regions. Then, we build a simple classifier based on the log-likelihood ratio between these two joint distributions. Our results show that as few as two values per image region are already enough to achieve a performance comparable with the state-of-the-art in bottom-up saliency prediction.


Human Brain Mapping | 2012

Fixation based event-related fmri analysis: Using eye fixations as events in functional magnetic resonance imaging to reveal cortical processing during the free exploration of visual images

Jan-Bernard C. Marsman; Remco Renken; Boris M. Velichkovsky; Johanna M. M. Hooymans; Frans W. Cornelissen

Eye movements, comprising predominantly fixations and saccades, are known to reveal information about perception and cognition, and they provide an explicit measure of attention. Nevertheless, fixations have not been considered as events in the analyses of data obtained during functional magnetic resonance imaging (fMRI) experiments. Most likely, this is due to their brevity and statistical properties. Despite these limitations, we used fixations as events to model brain activation in a free viewing experiment with standard fMRI scanning parameters. First, we found that fixations on different objects in different task contexts resulted in distinct cortical patterns of activation. Second, using multivariate pattern analysis, we showed that the BOLD signal revealed meaningful information about the task context of individual fixations and about the object being inspected during these fixations. We conclude that fixation‐based event‐related (FIBER) fMRI analysis creates new pathways for studying human brain function by enabling researchers to explore natural viewing behavior. Hum Brain Mapp, 2012.


Frontiers in Systems Neuroscience | 2013

Linking cortical visual processing to viewing behavior using fMRI.

Jan-Bernard C. Marsman; Remco Renken; Koen V. Haak; Frans W. Cornelissen

One characteristic of natural visual behavior in humans is the frequent shifting of eye position. It has been argued that the characteristics of these eye movements can be used to distinguish between distinct modes of visual processing (Unema et al., 2005). These viewing modes would be distinguishable on the basis of the eye-movement parameters fixation duration and saccade amplitude and have been hypothesized to reflect the differential involvement of dorsal and ventral systems in saccade planning and information processing. According to this hypothesis, on the one hand, while in a “pre-attentive” or ambient mode, primarily scanning eye movements are made; in this mode fixation are relatively brief and saccades tends to be relatively large. On the other hand, in “attentive” focal mode, fixations last longer and saccades are relatively small, and result in viewing behavior which could be described as detailed inspection. Thus far, no neuroscientific basis exists to support the idea that such distinct viewing modes are indeed linked to processing in distinct cortical regions. Here, we used fixation-based event-related (FIBER) fMRI in combination with independent component analysis (ICA) to investigate the neural correlates of these viewing modes. While we find robust eye-movement-related activations, our results do not support the theory that the above mentioned viewing modes modulate dorsal and ventral processing. Instead, further analyses revealed that eye-movement characteristics such as saccade amplitude and fixation duration did differentially modulate activity in three clusters in early, ventromedial and ventrolateral visual cortex. In summary, we conclude that evaluating viewing behavior is crucial for unraveling cortical processing in natural vision.

Collaboration


Dive into the Jan-Bernard C. Marsman's collaboration.

Top Co-Authors

Avatar

Remco Renken

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frans W. Cornelissen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Michelle N. Servaas

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Harriette Riese

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Johan Ormel

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jojanneke A. Bastiaansen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Marie-José van Tol

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Claire Kos

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Koen V. Haak

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge