Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koen V. Haak is active.

Publication


Featured researches published by Koen V. Haak.


Nature Neuroscience | 2011

Large-scale remapping of visual cortex is absent in adult humans with macular degeneration

Heidi A. Baseler; Andre Gouws; Koen V. Haak; Christopher Racey; Michael D. Crossland; Adnan Tufail; Gary S. Rubin; Frans W. Cornelissen; Antony B. Morland

The occipital lobe contains retinotopic representations of the visual field. The representation of the central retina in early visual areas (V1–3) is found at the occipital pole. When the central retina is lesioned in both eyes by macular degeneration, this region of visual cortex at the occipital pole is accordingly deprived of input. However, even when such lesions occur in adulthood, some visually driven activity in and around the occipital pole can be observed. It has been suggested that this activity is a result of remapping of this area so that it now responds to inputs from intact, peripheral retina. We evaluated whether or not remapping of visual cortex underlies this activity. Our functional magnetic resonance imaging results provide no evidence of remapping, questioning the contemporary view that early visual areas of the adult human brain have the capacity to reorganize extensively.


eLife | 2015

Functional topography of the human entorhinal cortex

Tobias Navarro Schröder; Koen V. Haak; Nestor I Zaragoza Jimenez; Christian F. Beckmann; Christian F. Doeller

Despite extensive research on the role of the rodent medial and lateral entorhinal cortex (MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel data-driven and model-based analyses to identify corresponding subregions in humans based on the well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial information. We provide evidence for a functional division primarily along the anteroposterior axis. Localising the human homologue of the rodent MEC and LEC has important implications for translating studies on the hippocampo-entorhinal memory system from rodents to humans. DOI: http://dx.doi.org/10.7554/eLife.06738.001


PLOS ONE | 2012

Population Receptive Field Dynamics in Human Visual Cortex

Koen V. Haak; Frans W. Cornelissen; Antony B. Morland

Seminal work in the early nineties revealed that the visual receptive field of neurons in cat primary visual cortex can change in location and size when artificial scotomas are applied. Recent work now suggests that these single neuron receptive field dynamics also pertain to the neuronal population receptive field (pRF) that can be measured in humans with functional magnetic resonance imaging (fMRI). To examine this further, we estimated the pRF in twelve healthy participants while masking the central portion of the visual field. We found that the pRF changes in location and size for two differently sized artificial scotomas, and that these pRF dynamics are most likely due to a combination of the neuronal receptive field position and size scatter as well as modulatory feedback signals from extrastriate visual areas.


NeuroImage | 2013

Connective field modeling.

Koen V. Haak; Jonathan Winawer; Ben M. Harvey; Remco Renken; Serge O. Dumoulin; Brian A. Wandell; Frans W. Cornelissen

The traditional way to study the properties of visual neurons is to measure their responses to visually presented stimuli. A second way to understand visual neurons is to characterize their responses in terms of activity elsewhere in the brain. Understanding the relationships between responses in distinct locations in the visual system is essential to clarify this network of cortical signaling pathways. Here, we describe and validate connective field modeling, a model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI). Just as the receptive field of a visual neuron predicts its response as a function of stimulus position, the connective field of a neuron predicts its response as a function of activity in another part of the brain. Connective field modeling opens up a wide range of research opportunities to study information processing in the visual system and other topographically organized cortices.


Cortex | 2014

Abnormal visual field maps in human cortex: a mini-review and a case report.

Koen V. Haak; Dave R. M. Langers; Remco Renken; Pim van Dijk; Johannes Borgstein; Frans W. Cornelissen

Human visual cortex contains maps of the visual field. Much research has been dedicated to answering whether and when these visual field maps change if critical components of the visual circuitry are damaged. Here, we first provide a focused mini-review of the functional magnetic resonance imaging (fMRI) studies that have evaluated the human cortical visual field maps in the face of retinal lesions, brain injury, and atypical retinocortical projections. We find that there is a fair body of research that has found abnormal fMRI activity, but also that this abnormal activity does not necessarily stem from cortical remapping. The abnormal fMRI activity can often be explained in terms of task effects and/or the uncovering of normally hidden system dynamics. We then present the case of a 16-year-old patient who lost the entire left cerebral hemisphere at age three for treatment of chronic focal encephalitis (Rasmussen syndrome) and intractable epilepsy. Using an fMRI retinotopic mapping procedure and population receptive field (pRF) modeling, we found that (1) despite the long period since the hemispherectomy, the retinotopic organization of early visual cortex remained unaffected by the removal of an entire cerebral hemisphere, and (2) the intact lateral occipital cortex contained an exceptionally large representation of the center of the visual field. The same method also indicates that the neuronal receptive fields in these lateral occipital brain regions are extraordinarily small. These features are clearly abnormal, but again they do not necessarily stem from cortical remapping. For example, the abnormal features can also be explained by the notion that the hemispherectomy took place during a critical period in the development of the lateral occipital cortex and therefore arrested its normal development. Thus, caution should be exercised when interpreting abnormal fMRI activity as a marker of cortical remapping; there are often other explanations.


Molecular Autism | 2016

Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.

Annika Rausch; Wei Zhang; Koen V. Haak; Maarten Mennes; Erno J. Hermans; Erik S. B. van Oort; Guido van Wingen; Christian F. Beckmann; Jan K. Buitelaar; Wouter B. Groen

BackgroundAmygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls.MethodsWe collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions.ResultsBetween-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei.ConclusionsThese results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.


Frontiers in Neuroscience | 2014

Cortical connective field estimates from resting state fMRI activity

Nicolas Gravel; Ben M. Harvey; Barbara Nordhjem; Koen V. Haak; Serge O. Dumoulin; Remco Renken; Branisalava Curcic-Blake; Frans W. Cornelissen

One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that—despite some variability in CF estimates between RS scans—neural properties such as CF maps and CF size can be derived from resting state data.


Current Biology | 2014

Four Days of Visual Contrast Deprivation Reveals Limits of Neuronal Adaptation

Koen V. Haak; Elizabeth Fast; Min Bao; Michael S. Lee; Stephen A. Engel

Sensory systems continuously adjust their function to match changes in the environment. Such adaptation produces large perceptual effects, and its pervasiveness makes it a key part of understanding cortical function generally. In visual contrast adaptation, for example, brief exposure to vertical stripes can dramatically alter the apparent orientation and intensity of similarly oriented patterns (e.g., [4-7]). However, many environmental changes are long lasting. How does the visual system adjust to such challenges? Most past work on contrast adaptation has adapted subjects for just a few minutes. Only a few studies have examined durations greater than 1 hr, and none have exceeded 1 day. Here, we measured perceptual effects of adaptation in humans who viewed a world lacking vertical information for 4 days continuously. As expected, adaptation increased in magnitude during the first day, but it then showed a drop in strength. The decrease in adaptation is surprising because the adapting environment remained constant, and in short-term work, adaptation always strengthens or at least is maintained under such conditions. It indicates that the classical effects of contrast adaptation, which arise largely in primary visual cortex, are not maintained after approximately 1 day. Results from day 2 through day 4 further showed that slower adaptive processes can overcome this limit. Because adaptation is generally beneficial overall, its limits argue that the brain is sensitive to costs that arise when the neural code changes. These costs may determine when and how cortex can alter its function.


Frontiers in Systems Neuroscience | 2013

Linking cortical visual processing to viewing behavior using fMRI.

Jan-Bernard C. Marsman; Remco Renken; Koen V. Haak; Frans W. Cornelissen

One characteristic of natural visual behavior in humans is the frequent shifting of eye position. It has been argued that the characteristics of these eye movements can be used to distinguish between distinct modes of visual processing (Unema et al., 2005). These viewing modes would be distinguishable on the basis of the eye-movement parameters fixation duration and saccade amplitude and have been hypothesized to reflect the differential involvement of dorsal and ventral systems in saccade planning and information processing. According to this hypothesis, on the one hand, while in a “pre-attentive” or ambient mode, primarily scanning eye movements are made; in this mode fixation are relatively brief and saccades tends to be relatively large. On the other hand, in “attentive” focal mode, fixations last longer and saccades are relatively small, and result in viewing behavior which could be described as detailed inspection. Thus far, no neuroscientific basis exists to support the idea that such distinct viewing modes are indeed linked to processing in distinct cortical regions. Here, we used fixation-based event-related (FIBER) fMRI in combination with independent component analysis (ICA) to investigate the neural correlates of these viewing modes. While we find robust eye-movement-related activations, our results do not support the theory that the above mentioned viewing modes modulate dorsal and ventral processing. Instead, further analyses revealed that eye-movement characteristics such as saccade amplitude and fixation duration did differentially modulate activity in three clusters in early, ventromedial and ventrolateral visual cortex. In summary, we conclude that evaluating viewing behavior is crucial for unraveling cortical processing in natural vision.


Multisensory Research | 2015

Plasticity, and Its Limits, in Adult Human Primary Visual Cortex.

Koen V. Haak; Antony B. Morland; Stephen A. Engel

There is an ongoing debate about whether adult human primary visual cortex (V1) is capable of large-scale cortical reorganization in response to bilateral retinal lesions. Animal models suggest that the visual neural circuitry maintains some plasticity through adulthood, and there are also a few human imaging studies in support this notion. However, the interpretation of these data has been brought into question, because there are factors besides cortical reorganization, such as the presence of sampling bias and/or the unmasking of task-dependent feedback signals from higher level visual areas, that could also explain the results. How reasonable would it be to accept that adult human V1 does not reorganize itself in the face of disease? Here, we discuss new evidence for the hypothesis that adult human V1 is not as capable of reorganization as in animals and juveniles, because in adult humans, cortical reorganization would come with costs that outweigh its benefits. These costs are likely functional and visible in recent experiments on adaptation--a rapid, short-term form of neural plasticity--where they prevent reorganization from being sustained over the long-term.

Collaboration


Dive into the Koen V. Haak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Remco Renken

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juraj Mesik

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Andre F. Marquand

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Annika Rausch

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge