Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan E. Carette is active.

Publication


Featured researches published by Jan E. Carette.


Nature | 2011

Ebola virus entry requires the cholesterol transporter Niemann–Pick C1

Jan E. Carette; Matthijs Raaben; Anthony C. Wong; Andrew S. Herbert; Gregor Obernosterer; Nirupama Mulherkar; Ana I. Kuehne; Philip J. Kranzusch; April M. Griffin; Gordon Ruthel; Paola Dal Cin; John M. Dye; Sean P. J. Whelan; Kartik Chandran; Thijn R. Brummelkamp

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann–Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann–Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Science | 2009

Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens

Jan E. Carette; Carla P. Guimaraes; Malini Varadarajan; Annie S. Park; Irene Wuethrich; Alzbeta Godarova; Maciej Kotecki; Brent H. Cochran; Eric Spooner; Hidde L. Ploegh; Thijn R. Brummelkamp

“Haploid Human” Genetic screens can provide direct insight into biological processes that are poorly understood. Carette et al. (p. 1231) describe genetic screens using large-scale gene disruption in human cells haploid for all chromosomes except for chromosome 8. One screen was used to identify host factors essential for the activity of cytolethal distending toxin, a toxin found in several pathogenic bacteria. Another screen identified host gene products essential for infection with influenza, and an additional screen revealed genes required for the action of adenosine 5′-diphosphate (ADP)–ribosylating bacterial toxins. This loss-of-function genetic approach in mammalian cells will be widely applicable to study a variety of biological processes and cellular functions. A method identifies human factors required for successful microbial pathogenesis. Loss-of-function genetic screens in model organisms have elucidated numerous biological processes, but the diploid genome of mammalian cells has precluded large-scale gene disruption. We used insertional mutagenesis to develop a screening method to generate null alleles in a human cell line haploid for all chromosomes except chromosome 8. Using this approach, we identified host factors essential for infection with influenza and genes encoding important elements of the biosynthetic pathway of diphthamide, which are required for the cytotoxic effects of diphtheria toxin and exotoxin A. We also identified genes needed for the action of cytolethal distending toxin, including a cell-surface protein that interacts with the toxin. This approach has both conceptual and practical parallels with genetic approaches in haploid yeast.


Science | 2015

Gene essentiality and synthetic lethality in haploid human cells

Vincent A. Blomen; Peter Májek; Lucas T. Jae; Johannes W. Bigenzahn; Joppe Nieuwenhuis; Jacqueline Staring; Roberto Sacco; Nadine Olk; Alexey Stukalov; Caleb Marceau; Hans Janssen; Jan E. Carette; Keiryn L. Bennett; Jacques Colinge; Giulio Superti-Furga; Thijn R. Brummelkamp

Zeroing in on essential human genes More powerful genetic techniques are helping to define the list of genes required for the life of a human cell. Two papers used the CRISPR genome editing system and a gene trap method in haploid human cells to screen for essential genes (see the Perspective by Boone and Andrews). Wang et al.s analysis of multiple cell lines indicates that it may be possible to find tumor-specific dependencies on particular genes. Blomen et al. investigate the phenomenon in which nonessential genes are required for fitness in the absence of another gene. Hence, complexity rather than robustness is the human strategy. Science, this issue p. 1096 and p. 1092; see also p. 1028 Systematic mutagenesis reveals essential genetic interactions required for human cells to keep growing. [Also see Perspective by Boone and Andrews] Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase β adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.


Molecular Cell | 2014

RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity

Pratyusha Mandal; Scott B. Berger; Sirika Pillay; Kenta Moriwaki; Chunzi Huang; Hongyan Guo; John D. Lich; Joshua N. Finger; Viera Kasparcova; Bart Votta; Michael T. Ouellette; Bryan W. King; David D. Wisnoski; Ami S. Lakdawala; Michael P. DeMartino; Linda N. Casillas; Pamela A. Haile; Clark A. Sehon; Robert W. Marquis; Jason W. Upton; Lisa P. Daley-Bauer; Linda Roback; Nancy Ramia; Cole M. Dovey; Jan E. Carette; Francis Ka-Ming Chan; John Bertin; Peter J. Gough; Edward S. Mocarski; William J. Kaiser

Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.


The EMBO Journal | 2012

Ebola virus entry requires the host-programmed recognition of an intracellular receptor

Emily Happy Miller; Gregor Obernosterer; Matthijs Raaben; Andrew S. Herbert; Maika S. Deffieu; Anuja Krishnan; Esther Ndungo; Rohini G. Sandesara; Jan E. Carette; Ana I. Kuehne; Gordon Ruthel; Suzanne R. Pfeffer; John M. Dye; Sean P. J. Whelan; Thijn R. Brummelkamp; Kartik Chandran

Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann‐Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non‐permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single‐pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP–NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.


Science | 2013

Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry

Lucas T. Jae; Matthijs Raaben; Moniek Riemersma; Ellen van Beusekom; Vincent A. Blomen; Arno Velds; Ron M. Kerkhoven; Jan E. Carette; Haluk Topaloglu; Peter Meinecke; Marja W. Wessels; Dirk J. Lefeber; Sean P. J. Whelan; Hans van Bokhoven; Thijn R. Brummelkamp

Viruses and Congenital Disorders Mutations in genes involved in α-dystroglycan O-linked glycosylation result in posttranslation modifications associated with the congenital disease Walker-Warburg syndrome (WWS). This cellular modification is also required for efficient Lassa virus infection of cells. Jae et al. (p. 479, published online 21 March) screened for genes involved in O-glycosylation that affected Lassa virus infection and identified candidates involved in glycosylation. Individuals from different pedigrees exhibiting WWS had unique mutations among genes identified in the genetic screen. Thus, comprehensive forward genetic screens can be used to define the genetic architecture of a complex disease. Deficiencies in the glycosylation of α-dystroglycan interfere with Lassa virus entry and link to Walker-Warburg syndrome Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells. In complementary screens, we profiled cells for absence of α-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of α-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.


Blood | 2010

Generation of iPSCs from cultured human malignant cells

Jan E. Carette; Jan Pruszak; Malini Varadarajan; Vincent A. Blomen; Sumita Gokhale; Fernando D. Camargo; Marius Wernig; Rudolf Jaenisch; Thijn R. Brummelkamp

Induced pluripotent stem cells (iPSCs) can be generated from various differentiated cell types by the expression of a set of defined transcription factors. So far, iPSCs have been generated from primary cells, but it is unclear whether human cancer cell lines can be reprogrammed. Here we describe the generation and characterization of iPSCs derived from human chronic myeloid leukemia cells. We show that, despite the presence of oncogenic mutations, these cells acquired pluripotency by the expression of 4 transcription factors and underwent differentiation into cell types derived of all 3 germ layers during teratoma formation. Interestingly, although the parental cell line was strictly dependent on continuous signaling of the BCR-ABL oncogene, also termed oncogene addiction, reprogrammed cells lost this dependency and became resistant to the BCR-ABL inhibitor imatinib. This finding indicates that the therapeutic agent imatinib targets cells in a specific epigenetic differentiated cell state, and this may contribute to its inability to fully eradicate disease in chronic myeloid leukemia patients.


Nature Biotechnology | 2011

Global gene disruption in human cells to assign genes to phenotypes by deep sequencing

Jan E. Carette; Carla P. Guimaraes; Irene Wuethrich; Vincent A. Blomen; Malini Varadarajan; Chong-Jing Sun; George W. Bell; Bingbing Yuan; Markus K Muellner; Sebastian M.B. Nijman; Hidde L. Ploegh; Thijn R. Brummelkamp

Insertional mutagenesis in a haploid background can disrupt gene function. We extend our earlier work by using a retroviral gene-trap vector to generate insertions in >98% of the genes expressed in a human cancer cell line that is haploid for all but one of its chromosomes. We apply phenotypic interrogation via tag sequencing (PhITSeq) to examine millions of mutant alleles through selection and parallel sequencing. Analysis of pools of cells, rather than individual clones enables rapid assessment of the spectrum of genes involved in the phenotypes under study. This facilitates comparative screens as illustrated here for the family of cytolethal distending toxins (CDTs). CDTs are virulence factors secreted by a variety of pathogenic Gram-negative bacteria responsible for tissue damage at distinct anatomical sites. We identify 743 mutations distributed over 12 human genes important for intoxication by four different CDTs. Although related CDTs may share host factors, they also exploit unique host factors to yield a profile characteristic for each CDT.


Nature Genetics | 2013

MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors

Kivanc Birsoy; Tim Wang; Richard Possemato; Ömer H. Yilmaz; Catherine E Koch; Walter W. Chen; Amanda W. Hutchins; Yetis Gultekin; Tim R. Peterson; Jan E. Carette; Thijn R. Brummelkamp; Clary B. Clish; David M. Sabatini

There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anticancer therapy are under way. Here, we performed a genome-wide haploid genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and sufficient for 3-BrPA uptake by cancer cells. Additionally, SLC16A1 mRNA levels are the best predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Furthermore, forced MCT1 expression in 3-BrPA–resistant cancer cells sensitizes tumor xenografts to 3-BrPA treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide proof of concept that the selectivity of cancer-expressed transporters can be exploited for delivering toxic molecules to tumors.


Journal of Virology | 2000

Cowpea Mosaic Virus Infection Induces a Massive Proliferation of Endoplasmic Reticulum but Not Golgi Membranes and Is Dependent on De Novo Membrane Synthesis

Jan E. Carette; Marchel Stuiver; Jan W. M. van Lent; J. Wellink; Ab van Kammen

ABSTRACT Replication of cowpea mosaic virus (CPMV) is associated with small membranous vesicles that are induced upon infection. The effect of CPMV replication on the morphology and distribution of the endomembrane system in living plant cells was studied by expressing green fluorescent protein (GFP) targeted to the endoplasmic reticulum (ER) and the Golgi membranes. CPMV infection was found to induce an extensive proliferation of the ER, whereas the distribution and morphology of the Golgi stacks remained unaffected. Immunolocalization experiments using fluorescence confocal microscopy showed that the proliferated ER membranes were closely associated with the electron-dense structures that contain the replicative proteins encoded by RNA1. Replication of CPMV was strongly inhibited by cerulenin, an inhibitor of de novo lipid synthesis, at concentrations where the replication of the two unrelated viruses alfalfa mosaic virus and tobacco mosaic virus was largely unaffected. These results suggest that proliferating ER membranes produce the membranous vesicles formed during CPMV infection and that this process requires continuous lipid biosynthesis.

Collaboration


Dive into the Jan E. Carette's collaboration.

Top Co-Authors

Avatar

Thijn R. Brummelkamp

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidde L. Ploegh

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Wellink

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge