Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caleb Marceau is active.

Publication


Featured researches published by Caleb Marceau.


Science | 2015

Gene essentiality and synthetic lethality in haploid human cells

Vincent A. Blomen; Peter Májek; Lucas T. Jae; Johannes W. Bigenzahn; Joppe Nieuwenhuis; Jacqueline Staring; Roberto Sacco; Nadine Olk; Alexey Stukalov; Caleb Marceau; Hans Janssen; Jan E. Carette; Keiryn L. Bennett; Jacques Colinge; Giulio Superti-Furga; Thijn R. Brummelkamp

Zeroing in on essential human genes More powerful genetic techniques are helping to define the list of genes required for the life of a human cell. Two papers used the CRISPR genome editing system and a gene trap method in haploid human cells to screen for essential genes (see the Perspective by Boone and Andrews). Wang et al.s analysis of multiple cell lines indicates that it may be possible to find tumor-specific dependencies on particular genes. Blomen et al. investigate the phenomenon in which nonessential genes are required for fitness in the absence of another gene. Hence, complexity rather than robustness is the human strategy. Science, this issue p. 1096 and p. 1092; see also p. 1028 Systematic mutagenesis reveals essential genetic interactions required for human cells to keep growing. [Also see Perspective by Boone and Andrews] Although the genes essential for life have been identified in less complex model organisms, their elucidation in human cells has been hindered by technical barriers. We used extensive mutagenesis in haploid human cells to identify approximately 2000 genes required for optimal fitness under culture conditions. To study the principles of genetic interactions in human cells, we created a synthetic lethality network focused on the secretory pathway based exclusively on mutations. This revealed a genetic cross-talk governing Golgi homeostasis, an additional subunit of the human oligosaccharyltransferase complex, and a phosphatidylinositol 4-kinase β adaptor hijacked by viruses. The synthetic lethality map parallels observations made in yeast and projects a route forward to reveal genetic networks in diverse aspects of human cell biology.


Nature | 2016

Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens

Caleb Marceau; Andreas S. Puschnik; Karim Majzoub; Yaw Shin Ooi; Susan M. Brewer; Gabriele Fuchs; Kavya Swaminathan; Miguel A. Mata; Joshua E. Elias; Peter Sarnow; Jan E. Carette

The Flaviviridae are a family of viruses that cause severe human diseases. For example, dengue virus (DENV) is a rapidly emerging pathogen causing an estimated 100 million symptomatic infections annually worldwide. No approved antivirals are available to date, and clinical trials with a tetravalent dengue vaccine showed disappointingly low protection rates. Hepatitis C virus (HCV) also remains a major medical problem, with 160 million chronically infected patients worldwide and only expensive treatments available. Despite distinct differences in their pathogenesis and modes of transmission, the two viruses share common replication strategies. A detailed understanding of the host functions that determine viral infection is lacking. Here we use a pooled CRISPR genetic screening strategy to comprehensively dissect host factors required for these two highly important Flaviviridae members. For DENV, we identified endoplasmic-reticulum (ER)-associated multi-protein complexes involved in signal sequence recognition, N-linked glycosylation and ER-associated degradation. DENV replication was nearly completely abrogated in cells deficient in the oligosaccharyltransferase (OST) complex. Mechanistic studies pinpointed viral RNA replication and not entry or translation as the crucial step requiring the OST complex. Moreover, we show that viral non-structural proteins bind to the OST complex. The identified ER-associated protein complexes were also important for infection by other mosquito-borne flaviviruses including Zika virus, an emerging pathogen causing severe birth defects. By contrast, the most significant genes identified in the HCV screen were distinct and included viral receptors, RNA-binding proteins and enzymes involved in metabolism. We found an unexpected link between intracellular flavin adenine dinucleotide (FAD) levels and HCV replication. This study shows notable divergence in host-dependency factors between DENV and HCV, and illuminates new host targets for antiviral therapy.


Circulation Research | 2014

Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform

Arun Sharma; Caleb Marceau; Ryoko Hamaguchi; Paul W. Burridge; Kuppusamy Rajarajan; Jared M. Churko; Haodi Wu; Karim Sallam; Elena Matsa; Anthony C. Sturzu; Yonglu Che; Antje D. Ebert; Sebastian Diecke; Ping Liang; Kristy Red-Horse; Jan E. Carette; Sean M. Wu; Joseph C. Wu

Rationale: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. Objective: This study examined whether human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. Methods and Results: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferon&bgr;1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferon&bgr;1 treatment. Conclusions: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.


Nature | 2017

Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens

Michael S. Khodadoust; Niclas Olsson; Lisa E. Wagar; Ole A. W. Haabeth; Binbin Chen; Kavya Swaminathan; Keith Rawson; Chih Long Liu; David Steiner; Peder Lund; Samhita Rao; Lichao Zhang; Caleb Marceau; Henning Stehr; Aaron M. Newman; Debra K. Czerwinski; Victoria Carlton; Martin Moorhead; Malek Faham; Holbrook Kohrt; Jan E. Carette; Michael R. Green; Mark M. Davis; Ronald Levy; Joshua E. Elias; Ash A. Alizadeh

Cancer somatic mutations can generate neoantigens that distinguish malignant from normal cells. However, the personalized identification and validation of neoantigens remains a major challenge. Here we discover neoantigens in human mantle-cell lymphomas by using an integrated genomic and proteomic strategy that interrogates tumour antigen peptides presented by major histocompatibility complex (MHC) class I and class II molecules. We applied this approach to systematically characterize MHC ligands from 17 patients. Remarkably, all discovered neoantigenic peptides were exclusively derived from the lymphoma immunoglobulin heavy- or light-chain variable regions. Although we identified MHC presentation of private polymorphic germline alleles, no mutated peptides were recovered from non-immunoglobulin somatically mutated genes. Somatic mutations within the immunoglobulin variable region were almost exclusively presented by MHC class II. We isolated circulating CD4+ T cells specific for immunoglobulin-derived neoantigens and found these cells could mediate killing of autologous lymphoma cells. These results demonstrate that an integrative approach combining MHC isolation, peptide identification, and exome sequencing is an effective platform to uncover tumour neoantigens. Application of this strategy to human lymphoma implicates immunoglobulin neoantigens as targets for lymphoma immunotherapy.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The adherens junctions control susceptibility to Staphylococcus aureus α-toxin

Lauren M. Popov; Caleb Marceau; Philipp Starkl; Jennifer H. Lumb; Jimit Shah; Diego Guerrera; Rachel L. Cooper; Christina Merakou; Donna M. Bouley; Wenxiang Meng; Hiroshi Kiyonari; Masatoshi Takeichi; Stephen J. Galli; Fabio Bagnoli; Sandra Citi; Jan E. Carette; Manuel R. Amieva

Significance Staphylococcus aureus is a major cause of invasive bacterial infection. One prominent virulence factor is α-toxin, a protein that injures the cell by forming a damaging pore across the cell membrane. We conducted a genetic screen to identify host factors that control susceptibility to α-toxin. We discovered that several components of the adherens junction complex modulate α-toxin cytotoxicity. By eliminating expression of the junctional protein plekstrin-homology domain containing protein 7 (PLEKHA7), cells gained the ability to recover from α-toxin injury and mice lacking PLEKHA7 exhibited improved healing from S. aureus skin infection and enhanced survival of pneumonia. Our data suggest that targeting nonessential host epithelial junction components can reduce S. aureus morbidity by enhancing cellular resilience to α-toxin injury. Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7−/− mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site

Gabriele Fuchs; Alexey Petrov; Caleb Marceau; Lauren M. Popov; Jin Chen; Seán E. O’Leary; Richard Y. Wang; Jan E. Carette; Peter Sarnow; Joseph D. Puglisi

Significance Protein biosynthesis is most tightly controlled during translation initiation that involves numerous initiation factors and regulatory proteins. This complexity confounds conventional biochemical methods. Single-molecule approaches are ideally suited to address such questions. However, their application is hindered by the lack of fluorescently labeled components of the eukaryotic translation machinery. Here, we demonstrate an approach to label human 40S ribosomal subunits. As an extension of this approach, we used single-molecule fluorescence to demonstrate that 40S ribosomal subunits are recruited to the hepatitis C virus mRNA in a single-step process, and that components of a translational extract regulate the conformation of this complex. Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.


eLife | 2015

A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells

Benjamin G. Gowen; Bryan Chim; Caleb Marceau; Trever T Greene; Patrick Burr; Jeanmarie R Gonzalez; Charles R. Hesser; Peter A Dietzen; Teal Russell; Alexandre Iannello; Laurent Coscoy; Charles L. Sentman; Jan E. Carette; Stefan A. Muljo; David H. Raulet

Recognition and elimination of tumor cells by the immune system is crucial for limiting tumor growth. Natural killer (NK) cells become activated when the receptor NKG2D is engaged by ligands that are frequently upregulated in primary tumors and on cancer cell lines. However, the molecular mechanisms driving NKG2D ligand expression on tumor cells are not well defined. Using a forward genetic screen in a tumor-derived human cell line, we identified several novel factors supporting expression of the NKG2D ligand ULBP1. Our results show stepwise contributions of independent pathways working at multiple stages of ULBP1 biogenesis. Deeper investigation of selected hits from the screen showed that the transcription factor ATF4 drives ULBP1 gene expression in cancer cell lines, while the RNA-binding protein RBM4 supports ULBP1 expression by suppressing a novel alternatively spliced isoform of ULBP1 mRNA. These findings offer insight into the stress pathways that alert the immune system to danger. DOI: http://dx.doi.org/10.7554/eLife.08474.001


eLife | 2016

Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

Andres M. Lebensohn; Ramin Dubey; Leif R. Neitzel; Ofelia Tacchelly-Benites; Eungi Yang; Caleb Marceau; Eric M. Davis; Bhaven B. Patel; Zahra Bahrami-Nejad; Kyle J Travaglini; Yashi Ahmed; Ethan Lee; Jan E. Carette; Rajat Rohatgi

The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001


Frontiers in Microbiology | 2012

Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments.

Ruben Michael Ceballos; Caleb Marceau; Joshua Ovila Marceau; Steven Morris; Adam J. Clore; Kenneth M. Stedman

An emerging model for investigating virus-host interactions in hyperthermophilic Archaea is the Fusellovirus-Sulfolobus system. The host, Sulfolobus, is a hyperthermophilic acidophile endemic to sulfuric hot springs worldwide. The Fuselloviruses, also known as Sulfolobus Spindle-shaped Viruses (SSVs), are “lemon” or “spindle”-shaped double-stranded DNA viruses, which are also found worldwide. Although a few studies have addressed the host-range for the type virus, Sulfolobus Spindle-shaped Virus 1 (SSV1), using common Sulfolobus strains, a comprehensive host-range study for SSV-Sulfolobus systems has not been performed. Herein, we examine six bona fide SSV strains (SSV1, SSV2, SSV3, SSVL1, SSVK1, SSVRH) and their respective infection characteristics on multiple hosts from the family Sulfolobaceae. A spot-on-lawn or “halo” assay was employed to determine SSV infectivity (and host susceptibility) in parallel challenges of multiple SSVs on a lawn of a single Sulfolobus strain. Different SSVs have different host-ranges with SSV1 exhibiting the narrowest host-range and SSVRH exhibiting the broadest host range. In contrast to previous reports, SSVs can infect hosts beyond the genus Sulfolobus. Furthermore, geography does not appear to be a reliable predictor of Sulfolobus susceptibility to infection by any given SSV. The ability for SSVs to infect susceptible Sulfolobus host does not appear to change between 65°C and 88°C (physiological range); however, very low pH appears to influence infection. Lastly, for the virus-host pairs tested the Fusellovirus-Sulfolobus system appears to exhibit host-advantage. This work provides a foundation for understanding Fusellovirus biology and virus-host coevolution in extreme ecosystems.


Cell Reports | 2017

A Small-Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral Activity

Andreas S. Puschnik; Caleb Marceau; Yaw Shin Ooi; Karim Majzoub; Natalie Rinis; Joseph N. Contessa; Jan E. Carette

The mosquito-borne flaviviruses include important human pathogens such as dengue, Zika, West Nile, and yellow fever viruses, which pose a serious threat for global health. Recent genetic screens identified endoplasmic reticulum (ER)-membrane multiprotein complexes, including the oligosaccharyltransferase (OST) complex, as critical flavivirus host factors. Here, we show that a chemical modulator of the OST complex termed NGI-1 has promising antiviral activity against flavivirus infections. We demonstrate that NGI-1 blocks viral RNA replication and that antiviral activity does not depend on inhibition of the N-glycosylation function of the OST. Viral mutants adapted to replicate in cells deficient of the OST complex showed resistance to NGI-1 treatment, reinforcing the on-target activity of NGI-1. Lastly, we show that NGI-1 also has strong antiviral activity in primary and disease-relevant cell types. This study provides an example for advancing from the identification of genetic determinants of infection to a host-directed antiviral compound with broad activity against flaviviruses.

Collaboration


Dive into the Caleb Marceau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan Lee

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge