Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Freudenberg is active.

Publication


Featured researches published by Jan Freudenberg.


Nature Genetics | 2012

Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis

Soumya Raychaudhuri; Cynthia Sandor; Eli A. Stahl; Jan Freudenberg; Hye Soon Lee; Xiaoming Jia; Lars Alfredsson; Leonid Padyukov; Lars Klareskog; Jane Worthington; Katherine A. Siminovitch; Sang-Cheol Bae; Robert M. Plenge; Peter K. Gregersen; Paul I. W. de Bakker

The genetic association of the major histocompatibility complex (MHC) to rheumatoid arthritis risk has commonly been attributed to alleles in HLA-DRB1. However, debate persists about the identity of the causal variants in HLA-DRB1 and the presence of independent effects elsewhere in the MHC. Using existing genome-wide SNP data in 5,018 individuals with seropositive rheumatoid arthritis (cases) and 14,974 unaffected controls, we imputed and tested classical alleles and amino acid polymorphisms in HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1, as well as 3,117 SNPs across the MHC. Conditional and haplotype analyses identified that three amino acid positions (11, 71 and 74) in HLA-DRβ1 and single–amino-acid polymorphisms in HLA-B (at position 9) and HLA-DPβ1 (at position 9), which are all located in peptide-binding grooves, almost completely explain the MHC association to rheumatoid arthritis risk. This study shows how imputation of functional variation from large reference panels can help fine map association signals in the MHC.


Nature Genetics | 2009

Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24.

Stefanie Birnbaum; Kerstin U. Ludwig; Heiko Reutter; Stefan Herms; Michael Steffens; Michele Rubini; Carlotta Baluardo; Melissa Ferrian; Nilma Almeida de Assis; Margrieta Alblas; Sandra Barth; Jan Freudenberg; Carola Lauster; Gül Schmidt; Martin Scheer; Bert Braumann; Stefaan J. Bergé; Rudolf H. Reich; Franziska Schiefke; Alexander Hemprich; Simone Pötzsch; Régine P.M. Steegers-Theunissen; Bernd Pötzsch; Susanne Moebus; Bernhard Horsthemke; Franz-Josef Kramer; Thomas F. Wienker; Peter A. Mossey; Peter Propping; Sven Cichon

We conducted a genome-wide association study involving 224 cases and 383 controls of Central European origin to identify susceptibility loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). A 640-kb region at chromosome 8q24.21 was found to contain multiple markers with highly significant evidence for association with the cleft phenotype, including three markers that reached genome-wide significance. The 640-kb cleft-associated region was saturated with 146 SNP markers and then analyzed in our entire NSCL/P sample of 462 unrelated cases and 954 controls. In the entire sample, the most significant SNP (rs987525) had a P value of 3.34 × 10−24. The odds ratio was 2.57 (95% CI = 2.02–3.26) for the heterozygous genotype and 6.05 (95% CI = 3.88–9.43) for the homozygous genotype. The calculated population attributable risk for this marker is 0.41, suggesting that this study has identified a major susceptibility locus for NSCL/P.


Molecular Psychiatry | 2004

Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder.

Johannes Schumacher; R Abon Jamra; Jan Freudenberg; Tim Becker; Stephanie Ohlraun; Andreas C.J. Otte; Monja Tullius; Svetlana Kovalenko; A. van Bogaert; W. Maier; Marcella Rietschel; Peter Propping; Markus M. Nöthen; S. Cichon

A recent study has suggested that the brain-expressed genes for G72 and D-amino-acid oxidase (DAAO) exert an influence on susceptibility to schizophrenia. Our aim was to replicate this finding in German schizophrenic patients and to assess whether G72 and DAAO might also contribute to the development of bipolar affective disorder. We genotyped seven single-nucleotide polymorphisms (SNPs) in the G72 gene and three in the DAAO gene in 599 patients (299 schizophrenic, 300 bipolar) and 300 controls. At G72, individual SNPs and a four-marker haplotype were associated with schizophrenia. The most significant SNP as well as the haplotype were also associated with bipolar affective disorder (BPAD). DAAO was associated with schizophrenia, but not with BPAD. The association of variation at G72 with schizophrenia as well as BPAD provides molecular support for the hypothesis that these two major psychiatric disorders share some of their etiologic background.


American Journal of Human Genetics | 2003

The DTNBP1 (Dysbindin) Gene Contributes to Schizophrenia, Depending on Family History of the Disease

Ann Van Den Bogaert; Johannes Schumacher; Thomas G. Schulze; Andreas C.J. Otte; Stephanie Ohlraun; Svetlana Kovalenko; Tim Becker; Jan Freudenberg; Erik G. Jönsson; Marja Mattila-Evenden; Göran Sedvall; Piotr M. Czerski; Pawel Kapelski; Joanna Hauser; Wolfgang Maier; Marcella Rietschel; Peter Propping; Markus M. Nöthen; S. Cichon

We have investigated the gene for dystrobrevin-binding protein 1 (DTNBP1), or dysbindin, which has been strongly suggested as a positional candidate gene for schizophrenia, in three samples of subjects with schizophrenia and unaffected control subjects of German (418 cases, 285 controls), Polish (294 cases, 113 controls), and Swedish (142 cases, 272 controls) descent. We analyzed five single-nucleotide polymorphisms (P1635, P1325, P1320, P1757, and P1578) and identified significant evidence of association in the Swedish sample but not in those from Germany or Poland. The results in the Swedish sample became even more significant after a separate analysis of those cases with a positive family history of schizophrenia, in whom the five-marker haplotype A-C-A-T-T showed a P value of.00009 (3.1% in controls, 17.8% in cases; OR 6.75; P=.00153 after Bonferroni correction). Our results suggest that genetic variation in the dysbindin gene is particularly involved in the development of schizophrenia in cases with a familial loading of the disease. This would also explain the difficulty of replicating this association in consecutively ascertained case-control samples, which usually comprise only a small proportion of subjects with a family history of disease.


American Journal of Human Genetics | 2005

Genetic Variation in the Human Androgen Receptor Gene Is the Major Determinant of Common Early-Onset Androgenetic Alopecia

Axel M. Hillmer; S. Hanneken; Sibylle Ritzmann; Tim Becker; Jan Freudenberg; Felix F. Brockschmidt; Antonia Flaquer; Yun Freudenberg-Hua; Rami Abou Jamra; Christine Metzen; Uwe Heyn; Nadine Schweiger; Regina C. Betz; Bettina Blaumeiser; Jochen Hampe; Stefan Schreiber; Thomas G. Schulze; Hans Christian Hennies; Johannes Schumacher; Peter Propping; Thomas Ruzicka; Sven Cichon; Thomas F. Wienker; Roland Kruse; Markus M. Nöthen

Androgenetic alopecia (AGA), or male-pattern baldness, is the most common form of hair loss. Its pathogenesis is androgen dependent, and genetic predisposition is the major requirement for the phenotype. We demonstrate that genetic variability in the androgen receptor gene (AR) is the cardinal prerequisite for the development of early-onset AGA, with an etiological fraction of 0.46. The investigation of a large number of genetic variants covering the AR locus suggests that a polyglycine-encoding GGN repeat in exon 1 is a plausible candidate for conferring the functional effect. The X-chromosomal location of AR stresses the importance of the maternal line in the inheritance of AGA.


Nature | 2010

Functionally defective germline variants of sialic acid acetylesterase in autoimmunity

Ira Surolia; Stephan P. Pirnie; Vasant Chellappa; Kendra N. Taylor; Annaiah Cariappa; Jesse Moya; Haoyuan Liu; Daphne W. Bell; David R. Driscoll; Sven Diederichs; Khaleda Haider; Ilka Arun Netravali; Sheila Le; Roberto Elia; Ethan Dow; Annette Lee; Jan Freudenberg; Philip L. De Jager; Yves Chretien; Ajit Varki; Marcy E. MacDonald; Tammy Gillis; Timothy W. Behrens; Donald B. Bloch; Deborah S. Collier; Joshua R. Korzenik; Daniel K. Podolsky; David A. Hafler; Mandakolathur R. Murali; Bruce E. Sands

Sialic acid acetylesterase (SIAE) is an enzyme that negatively regulates B lymphocyte antigen receptor signalling and is required for the maintenance of immunological tolerance in mice. Heterozygous loss-of-function germline rare variants and a homozygous defective polymorphic variant of SIAE were identified in 24/923 subjects of European origin with relatively common autoimmune disorders and in 2/648 controls of European origin. All heterozygous loss-of-function SIAE mutations tested were capable of functioning in a dominant negative manner. A homozygous secretion-defective polymorphic variant of SIAE was catalytically active, lacked the ability to function in a dominant negative manner, and was seen in eight autoimmune subjects but in no control subjects. The odds ratio for inheriting defective SIAE alleles was 8.6 in all autoimmune subjects, 8.3 in subjects with rheumatoid arthritis, and 7.9 in subjects with type I diabetes. Functionally defective SIAE rare and polymorphic variants represent a strong genetic link to susceptibility in relatively common human autoimmune disorders.


Arthritis & Rheumatism | 2011

Genome-Wide Association Study of Rheumatoid Arthritis in Koreans: Population-Specific Loci as Well as Overlap With European Susceptibility Loci

Jan Freudenberg; Hye-Soon Lee; Bok-Ghee Han; Hyoung D. Shin; Young Mo Kang; Yoon-Kyoung Sung; Seung-Cheol Shim; Chan-Bum Choi; Annette Lee; Peter K. Gregersen; Sang-Cheol Bae

OBJECTIVEnTo perform a genome-wide association study (GWAS) in Koreans in order to identify susceptibility loci for rheumatoid arthritis (RA).nnnMETHODSnWe generated high-quality genotypes for 441,398 single-nucleotide polymorphisms (SNPs) in 801 RA cases and 757 controls. We then tested 79 markers from 46 loci for replication in an independent sample of 718 RA cases and 719 controls.nnnRESULTSnGenome-wide significance (P < 5 × 10(-08) ) was attained by markers from the major histocompatibility complex region and from the PADI4 gene. The replication data showed nominal association signals (P < 5 × 10(-02) ) for markers from 11 of the 46 replicated loci, greatly exceeding random expectation. Genes that were most significant in the replication stage and in the combined analysis include the known European RA loci BLK, AFF3, and CCL21. Thus, in addition to the previously associated STAT4 alleles, variants at these three loci may contribute to RA not only among Europeans, but also among Asians. In addition, we observed replication signals near the genes PTPN2, FLI1, ARHGEF3, LCP2, GPR137B, TRHDE, and CGA1. Based on the excess of small P values in the replication stage study, we estimate that more than half of these loci are genuine RA susceptibility genes. Finally, we systematically analyzed the presence of association signals in Koreans at established European RA loci, which showed a significant enrichment of European RA loci among the Korean RA loci.nnnCONCLUSIONnGenetic risk for RA involves both population-specific loci as well as many shared genetic susceptibility loci in comparisons of Asian and European populations.


Human Molecular Genetics | 2008

Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington's disease

Silke Metzger; Juan Rong; Hp Nguyen; Austin Cape; Juergen Tomiuk; Anne S. Soehn; Peter Propping; Yun Freudenberg-Hua; Jan Freudenberg; Liang Tong; Shihua Li; Xiao-Jiang Li; Olaf Riess

A polyglutamine repeat expansion of more than 36 units in a protein called huntingtin (htt) is the only known cause of Huntingtons disease (HD). The expanded repeat length is inversely correlated with the age-at-onset (AAO), however, the onset age among HD patients with CAG repeats below 60 units varies considerably. In addition to environmental factors, genetic factors different from the expanded CAG repeat length can modify the AAO of HD. We hypothezised that htt interacting proteins might contribute to this variation in the AAO and investigated human htt-associated protein-1 (HAP1) using genetic and functional assays. We identified six polymorphisms in the HAP1 gene including one that substitutes methionine (M441) for threonine (T441) at amino acid 441. Analyzing 980 European HD patients, we found that patients homozygous for the M441 genotype show an 8-year delay in the AAO. Functional assays demonstrated that human M441-HAP1 interacts with mutant htt more tightly than does human T441-HAP1, reduces soluble htt degraded products and protects against htt-mediated toxicity. We thus provide genetic and functional evidence that the M441-HAP1 polymorphism modifies the AAO of HD.


Human Genetics | 2009

New genetic evidence for involvement of the dopamine system in migraine with aura

Unda Todt; Christian Netzer; Mohammad R. Toliat; A. Heinze; Ingrid Goebel; Peter Nürnberg; Hartmut Göbel; Jan Freudenberg; Christian Kubisch

In order to systematically test the hypothesis that genetic variation in the dopamine system contributes to the susceptibility to migraine with aura (MA), we performed a comprehensive genetic association study of altogether ten genes from the dopaminergic system in a large German migraine with aura case-control sample. Based on the genotyping results of 53 variants across the ten genes in 270 MA cases and 272 controls, three genes—DBH, DRD2 and SLC6A3—were chosen to proceed to additional genotyping of 380 MA cases and 378 controls. Four of the 26 genotyped polymorphisms in these three genes displayed nominally significant allelic P-values in the sample of 650 MA patients and 650 controls. Three of these SNPs [rs2097629 in DBH (uncorrected allelic P valuexa0=xa00.0012, ORxa0=xa00.77), rs7131056 in DRD2 (uncorrected allelic P valuexa0=xa00.0018, ORxa0=xa01.28) and rs40184 in SLC6A3 (uncorrected allelic P valuexa0=xa00.0082, ORxa0=xa00.81)] remained significant after gene-wide correction for multiple testing by permutation analysis. Further consideration of imputed genotype data from 2,937 British control individuals did not affirm the association with DRD2, but supported the associations with DBH and SLC6A3. Our data provide new evidence for an involvement of components of the dopaminergic system—in particular the dopamine-beta hydroxylase and dopamine transporter genes—to the pathogenesis of migraine with aura.


American Journal of Human Genetics | 2012

Use of a Multiethnic Approach to Identify Rheumatoid- Arthritis-Susceptibility Loci, 1p36 and 17q12

Fina Kurreeman; Eli A. Stahl; Yukinori Okada; Katherine P. Liao; Dorothée Diogo; Soumya Raychaudhuri; Jan Freudenberg; Yuta Kochi; Nikolaos A. Patsopoulos; Namrata Gupta; Cynthia Sandor; So Young Bang; Hye Soon Lee; Leonid Padyukov; Akari Suzuki; Katherine A. Siminovitch; Jane Worthington; Peter K. Gregersen; Laura B. Hughes; Richard J. Reynolds; S. Louis Bridges; Sang-Cheol Bae; Kazuhiko Yamamoto; Robert M. Plenge

We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multiethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded genome-wide significance (p < 5 × 10(-8)) in our previous RA genome-wide association study (GWAS) were analyzed in independent sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we conducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication samples. Two SNPs (rs3890745 at the 1p36 locus [p = 2.3 × 10(-12)] and rs2872507 at the 17q12 locus [p = 1.7 × 10(-9)]) surpassed genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic analyses identified TNFRSF14-MMEL1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associated with RA. These findings demonstrate empirically that a multiethnic approach is an effective strategy for discovering RA risk loci, and they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.

Collaboration


Dive into the Jan Freudenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Becker

German Center for Neurodegenerative Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge