Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan G. Wiederhold is active.

Publication


Featured researches published by Jan G. Wiederhold.


Environmental Science & Technology | 2010

Equilibrium Mercury Isotope Fractionation between Dissolved Hg(II) Species and Thiol-Bound Hg

Jan G. Wiederhold; Christopher J. Cramer; Kelly Daniel; Ivan Infante; Bernard Bourdon; Ruben Kretzschmar

Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Hg(II) chloride and nitrate solutions were equilibrated in parallel batches with varying amounts of thiol resin resulting in different fractions of thiol-bound and free Hg. Mercury isotope ratios in both fractions were analyzed by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). Theoretical equilibrium Hg isotope effects by mass-dependent fractionation (MDF) and nuclear volume fractionation (NVF) were calculated for 14 relevant Hg(II) species. The experimental data revealed that thiol-bound Hg was enriched in light Hg isotopes by 0.53 per thousand and 0.62 per thousand (delta(202)Hg) relative to HgCl(2) and Hg(OH)(2), respectively. The computational results were in excellent agreement with the experimental data indicating that a combination of MDF and NVF was responsible for the observed Hg isotope fractionation. Small mass-independent fractionation (MIF) effects (<0.1 per thousand) were observed representing one of the first experimental evidences for MIF of Hg isotopes by NVF. Our results indicate that significant equilibrium Hg isotope fractionation can occur without redox transition, and that NVF must be considered in addition to MDF to explain Hg isotope variations.


Environmental Science & Technology | 2015

Metal Stable Isotope Signatures as Tracers in Environmental Geochemistry

Jan G. Wiederhold

The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.


Environmental Science & Technology | 2012

Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite.

Martin Jiskra; Jan G. Wiederhold; Bernard Bourdon; Ruben Kretzschmar

The application of Hg isotope signatures as tracers for environmental Hg cycling requires the determination of isotope fractionation factors and mechanisms for individual processes. Here, we investigated Hg isotope fractionation of Hg(II) sorption to goethite in batch systems under different experimental conditions. We observed a mass-dependent enrichment of light Hg isotopes on the goethite surface relative to dissolved Hg (ε(202)Hg of -0.30‰ to -0.44‰) which was independent of the pH, chloride and sulfate concentration, type of surface complex, and equilibration time. Based on previous theoretical equilibrium fractionation factors, we propose that Hg isotope fractionation of Hg(II) sorption to goethite is controlled by an equilibrium isotope effect between Hg(II) solution species, expressed on the mineral surface by the adsorption of the cationic solution species. In contrast, the formation of outer-sphere complexes and subsequent conformation changes to different inner-sphere complexes appeared to have insignificant effects on the observed isotope fractionation. Our findings emphasize the importance of solution speciation in metal isotope sorption studies and suggest that the dissolved Hg(II) pool in soils and sediments, which is the most mobile and bioavailable, should be isotopically heavy, as light Hg isotopes are preferentially sequestered during binding to both mineral phases and natural organic matter.


Environmental Science & Technology | 2015

Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures.

Martin Jiskra; Jan G. Wiederhold; Ulf Skyllberg; Rose-Marie Kronberg; Irka Hajdas; Ruben Kretzschmar

Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult because of an insufficient understanding of the governing processes. We measured Hg stable isotope signatures of radiocarbon-dated boreal forest soils and modeled atmospheric Hg deposition and re-emission pathways and fluxes using a combined source and process tracing approach. Our results suggest that Hg in the soils was dominantly derived from deposition of litter (∼90% on average). The remaining fraction was attributed to precipitation-derived Hg, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative of an accumulation over decades. We provide evidence for significant Hg re-emission from organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic matter, a process previously not observed unambiguously in nature. Our data suggest that Histosols (peat soils), which exhibit at least seasonally water-saturated conditions, have re-emitted up to one-third of previously deposited Hg back to the atmosphere. Re-emission of legacy Hg following reduction by natural organic matter may therefore be an important pathway to be considered in global models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange.


Environmental Science & Technology | 2010

Iron isotope fractionation during Fe uptake and translocation in alpine plants.

Mirjam Kiczka; Jan G. Wiederhold; Stephan M. Kraemer; Bernard Bourdon; Ruben Kretzschmar

The potential of stable Fe isotopes as a tracer for the biogeochemical Fe cycle depends on the understanding and quantification of the fractionation processes involved. Iron uptake and cycling by plants may influence Fe speciation in soils. Here, we determined the Fe isotopic composition of different plant parts including the complete root system of three alpine plant species (Oxyria digyna, Rumex scutatus, Agrostis gigantea) in a granitic glacier forefield, which allowed us, for the first time, to distinguish between uptake and in-plant fractionation processes. The overall range of fractionation was 4.5 per thousand in delta(56)Fe. Mass balance calculations demonstrated that fractionation toward lighter Fe isotopic composition occurred in two steps during uptake: (1) before active uptake, probably during mineral dissolution and (2) during selective uptake of Fe at the plasma membrane with an enrichment factor of -1.0 to -1.7 per thousand for all three species. Iron isotopes were further fractionated during remobilization from old into new plant tissue, which changed the isotopic composition of leaves and flowers over the season. This study demonstrates the potential of Fe isotopes as a new tool in plant nutrition studies but also reveals challenges for the future application of Fe isotope signatures in soil-plant environments.


Environmental Science & Technology | 2013

Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine.

Jan G. Wiederhold; Robin S. Smith; Hagar Siebner; Adam D. Jew; Gordon E. Brown; Bernard Bourdon; Ruben Kretzschmar

Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes provides a new tool for tracing Hg in contaminated environments such as mining sites, which represent major point sources of Hg pollution into surrounding ecosystems. Here, we present Hg isotope ratios of unroasted ore waste, calcine (roasted ore), and poplar leaves collected at a closed Hg mine (New Idria, CA, U.S.A.). Unroasted ore waste was isotopically uniform with δ(202)Hg values from -0.09 to 0.16‰ (± 0.10‰, 2 SD), close to the estimated initial composition of the HgS ore (-0.26‰). In contrast, calcine samples exhibited variable δ(202)Hg values ranging from -1.91‰ to +2.10‰. Small MIF signatures in the calcine were consistent with nuclear volume fractionation of Hg isotopes during or after the roasting process. The poplar leaves exhibited negative MDF (-3.18 to -1.22‰) and small positive MIF values (Δ(199)Hg of 0.02 to 0.21‰). Sequential extractions combined with Hg isotope analysis revealed higher δ(202)Hg values for the more soluble Hg pools in calcines compared with residual HgS phases. Our data provide novel insights into possible in situ transformations of Hg phases and suggest that isotopically heavy secondary Hg phases were formed in the calcine, which will influence the isotope composition of Hg leached from the site.


Environmental Science & Technology | 2015

Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources.

Jan G. Wiederhold; Ulf Skyllberg; Andreas Drott; Martin Jiskra; Sofi Jonsson; Erik Björn; Bernard Bourdon; Ruben Kretzschmar

Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 μg g(-1), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF δ(202)Hg: -0.2‰ to -0.5‰; MIF Δ(199)Hg: -0.05‰ to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (δ(202)Hg: -2.1‰ to 0.6‰; Δ(199)Hg: -0.19‰ to 0.03‰) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1‰ heavier in δ(202)Hg than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments.


Biogeochemistry | 2013

Calcium isotope fractionation in alpine plants

Ruth S. Hindshaw; Ben C. Reynolds; Jan G. Wiederhold; Mirjam Kiczka; Ruben Kretzschmar; Bernard Bourdon

In order to develop Ca isotopes as a tracer for biogeochemical Ca cycling in terrestrial environments and for Ca utilisation in plants, stable calcium isotope ratios were measured in various species of alpine plants, including woody species, grasses and herbs. Analysis of plant parts (root, stem, leaf and flower samples) provided information on Ca isotope fractionation within plants and seasonal sampling of leaves revealed temporal variation in leaf Ca isotopic composition. There was significant Ca isotope fractionation between soil and root tissue


Environmental Science & Technology | 2014

Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach.

Martin Jiskra; Damian Saile; Jan G. Wiederhold; Bernard Bourdon; Erik Björn; Ruben Kretzschmar


Environmental Science & Technology | 2015

Mercury isotope fractionation during precipitation of metacinnabar (β-HgS) and montroydite (HgO).

Robin S. Smith; Jan G. Wiederhold; Ruben Kretzschmar

\Updelta^{44/42}\hbox{Ca}_{\rm root-soil} \approx -0.40\,\permille

Collaboration


Dive into the Jan G. Wiederhold's collaboration.

Top Co-Authors

Avatar

Bernard Bourdon

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Skyllberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rose-Marie Kronberg

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge