Martin Jiskra
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Jiskra.
Environmental Science & Technology | 2012
Martin Jiskra; Jan G. Wiederhold; Bernard Bourdon; Ruben Kretzschmar
The application of Hg isotope signatures as tracers for environmental Hg cycling requires the determination of isotope fractionation factors and mechanisms for individual processes. Here, we investigated Hg isotope fractionation of Hg(II) sorption to goethite in batch systems under different experimental conditions. We observed a mass-dependent enrichment of light Hg isotopes on the goethite surface relative to dissolved Hg (ε(202)Hg of -0.30‰ to -0.44‰) which was independent of the pH, chloride and sulfate concentration, type of surface complex, and equilibration time. Based on previous theoretical equilibrium fractionation factors, we propose that Hg isotope fractionation of Hg(II) sorption to goethite is controlled by an equilibrium isotope effect between Hg(II) solution species, expressed on the mineral surface by the adsorption of the cationic solution species. In contrast, the formation of outer-sphere complexes and subsequent conformation changes to different inner-sphere complexes appeared to have insignificant effects on the observed isotope fractionation. Our findings emphasize the importance of solution speciation in metal isotope sorption studies and suggest that the dissolved Hg(II) pool in soils and sediments, which is the most mobile and bioavailable, should be isotopically heavy, as light Hg isotopes are preferentially sequestered during binding to both mineral phases and natural organic matter.
Environmental Science & Technology | 2015
Martin Jiskra; Jan G. Wiederhold; Ulf Skyllberg; Rose-Marie Kronberg; Irka Hajdas; Ruben Kretzschmar
Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult because of an insufficient understanding of the governing processes. We measured Hg stable isotope signatures of radiocarbon-dated boreal forest soils and modeled atmospheric Hg deposition and re-emission pathways and fluxes using a combined source and process tracing approach. Our results suggest that Hg in the soils was dominantly derived from deposition of litter (∼90% on average). The remaining fraction was attributed to precipitation-derived Hg, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative of an accumulation over decades. We provide evidence for significant Hg re-emission from organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic matter, a process previously not observed unambiguously in nature. Our data suggest that Histosols (peat soils), which exhibit at least seasonally water-saturated conditions, have re-emitted up to one-third of previously deposited Hg back to the atmosphere. Re-emission of legacy Hg following reduction by natural organic matter may therefore be an important pathway to be considered in global models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange.
Nature | 2017
Daniel Obrist; Yannick Agnan; Martin Jiskra; Christine L. Olson; Dominique P. Colegrove; Jacques Hueber; Christopher W. Moore; Jeroen E. Sonke; Detlev Helmig
Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through ‘atmospheric mercury depletion events’, or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)—the form ubiquitously present in the global atmosphere—occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.
Environmental Science & Technology | 2015
Jan G. Wiederhold; Ulf Skyllberg; Andreas Drott; Martin Jiskra; Sofi Jonsson; Erik Björn; Bernard Bourdon; Ruben Kretzschmar
Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 μg g(-1), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF δ(202)Hg: -0.2‰ to -0.5‰; MIF Δ(199)Hg: -0.05‰ to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (δ(202)Hg: -2.1‰ to 0.6‰; Δ(199)Hg: -0.19‰ to 0.03‰) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1‰ heavier in δ(202)Hg than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments.
Environmental Science & Technology | 2011
Marita Skarpeli-Liati; Martin Jiskra; Aurora Turgeon; Ashley N. Garr; William A. Arnold; Christopher J. Cramer; Ren e P. Schwarzenbach; Thomas B. Hofstetter
We explored the N isotope fractionation associated with the oxidation of substituted primary aromatic amines, which are often the position of initial attack in transformation processes of environmental contaminants. Apparent (15)N-kinetic isotope effects, AKIE(N), were determined for the oxidation of various substituted anilines in suspensions of manganese oxide (MnO(2)) and compared to reference experiments in homogeneous solutions and at electrode surfaces, as well as to density functional theory calculations of intrinsic KIE(N)for electron and hydrogen atom transfer reactions. Owing to the partial aromatic imine formation after one-electron oxidation and corresponding increase in C-N bond strength, AKIE(N)-values were inverse, substituent-dependent, and confined to the range between 0.992 and 0.999 in agreement with theory. However, AKIE(N)-values became normal once the fraction of cationic species prevailed owing to (15)N-equilibrium isotope effects, EIE(N), of 1.02 associated with N atom deprotonation. The observable AKIE(N)-values are substantially modulated by the acid/base pre-equilibria of the substituted anilines and isotope fractionation may even vanish under conditions where normal EIE(N) and inverse AKIE(N) cancel each other out. The pH-dependent trends of the AKIE(N)-values provide a new line of evidence for the identification of contaminant degradation processes via oxidation of primary aromatic amino groups.
Environmental Science & Technology | 2014
Martin Jiskra; Damian Saile; Jan G. Wiederhold; Bernard Bourdon; Erik Björn; Ruben Kretzschmar
The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.
Global Biogeochemical Cycles | 2016
Rose-Marie Kronberg; Andreas Drott; Martin Jiskra; Jan G. Wiederhold; Erik Björn; Ulf Skyllberg
Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80year o ...
Environmental Science & Technology | 2016
Rose-Marie Kronberg; Martin Jiskra; Jan G. Wiederhold; Erik Björn; Ulf Skyllberg
Final harvest (clear-cutting) of coniferous boreal forests has been shown to increase streamwater concentrations and export of the neurotoxin methyl mercury (MeHg) to freshwater ecosystems. Here, the spatial distribution of inorganic Hg and MeHg in soil as a consequence of clear-cutting is reported. A comparison of soils at similar positions along hillslopes in four 80 years old Norway spruce (Picea abies) stands (REFs) with those in four similar stands subjected to clear-cutting (CCs) revealed significantly (p < 0.05) enhanced MeHg concentrations (ng g(-1)), MeHg areal masses (g ha(-1)), and percent MeHg of HgTOT in O horizons of CCs located between 1 and 41 m from streams. Inorganic Hg measures did not differ between REFs and CCs at any position. The O horizon thickness did not differ between CCs and REFs, but the groundwater table and soil water content were significantly higher at CCs than at REFs. The largest difference in percent MeHg of HgTOT (12 times higher at CCs compared to REFs, p = 0.003) was observed in concert with a significant enhancement in soil water content (p = 0.0003) at intermediate hillslope positions (20-38 m from stream), outside the stream riparian zone. Incubation experiments demonstrated that soils having significantly enhanced soil pools of MeHg after clear-cutting also showed significantly enhanced methylation potential as compared with similarly positioned soils in mature reference stands. The addition of inhibitors demonstrated that sulfate-reducing bacteria (SRB) and methanogens were key methylators. Rates of demethylation did not differ between CCs and REFs. Our results suggest that enhanced water saturation of organic soils providing readily available electron donors stimulate Hg-methylating microbes to net formation and buildup of MeHg in O horizons after forest harvest.
Environmental Science & Technology | 2017
Nicolas Marusczak; Jeroen E. Sonke; Xuewu Fu; Martin Jiskra
Gaseous elemental mercury (GEM, Hg) emissions are transformed to divalent reactive Hg (RM) forms throughout the troposphere and stratosphere. RM is often operationally quantified as the sum of particle bound Hg (PBM) and gaseous oxidized Hg (GOM). The measurement of GOM and PBM is challenging and under mounting criticism. Here we intercompare six months of automated GOM and PBM measurements using a Tekran (TK) KCl-coated denuder and quartz regenerable particulate filter method (GOMTK, PBMTK, and RMTK) with RMCEM collected on cation exchange membranes (CEMs) at the high altitude Pic du Midi Observatory. We find that RMTK is systematically lower by a factor of 1.3 than RMCEM. We observe a significant relationship between GOMTK (but not PBMTK) and Tekran flushTK blanks suggesting significant loss (36%) of labile GOMTK from the denuder or inlet. Adding the flushTK blank to RMTK results in good agreement with RMCEM (slope = 1.01, r2 = 0.90) suggesting we can correct bias in RMTK and GOMTK. We provide a bias corrected (*) Pic du Midi data set for 2012-2014 that shows GOM* and RM* levels in dry free tropospheric air of 198 ± 57 and 229 ± 58 pg m-3 which agree well with in-flight observed RM and with model based GOM and RM estimates.
AMBIO: A Journal of the Human Environment | 2018
Daniel Obrist; Jane L. Kirk; Lei Zhang; Elsie M. Sunderland; Martin Jiskra; Noelle E. Selin