Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Geilhufe is active.

Publication


Featured researches published by Jan Geilhufe.


Nature Communications | 2012

ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls

Bastian Pfau; S. Schaffert; L. Müller; C. Gutt; A. Al-Shemmary; Felix Büttner; Renaud Delaunay; S. Düsterer; Samuel Flewett; Robert Frömter; Jan Geilhufe; Erik Guehrs; Christian M. Günther; R. Hawaldar; M. Hille; N. Jaouen; A. Kobs; K. Li; J. Mohanty; H. Redlin; W. F. Schlotter; Daniel Stickler; Rolf Treusch; Boris Vodungbo; Mathias Kläui; Hans Peter Oepen; Jan Lüning; G. Grübel; S. Eisebitt

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses.


Nature Nanotechnology | 2017

Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques

Felix Büttner; Ivan Lemesh; Michael D. Schneider; Bastian Pfau; Christian M. Günther; Piet Hessing; Jan Geilhufe; Lucas Caretta; D. Engel; Benjamin Krüger; Jens Viefhaus; S. Eisebitt; Geoffrey S. D. Beach

Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.


Physical Review B | 2015

Irreversible transformation of ferromagnetic ordered stripe domains in single-shot infrared-pump/resonant-x-ray-scattering-probe experiments

Nicolas Bergeard; S. Schaffert; Víctor López-Flores; N. Jaouen; Jan Geilhufe; Christian M. Günther; Michael Schneider; Catherine Graves; Tianhan Wang; Benny Wu; Andreas Scherz; Cédric Baumier; Renaud Delaunay; Franck Fortuna; Marina Tortarolo; Bharati Tudu; O. Krupin; Michael P. Minitti; Joe Robinson; W. F. Schlotter; J. J. Turner; Jan Lüning; S. Eisebitt; C. Boeglin

The evolution of a magnetic domain structure upon excitation by an intense, femtosecond infrared (IR) laser pulse has been investigated using single-shot based time-resolved resonant x-ray scattering at the x-ray free electron laser LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film has been used as a prototype magnetic domain structure for this study. The fluence of the IR laser pump pulse was sufficient to lead to an almost complete quenching of the magnetization within the ultrafast demagnetization process taking place within the first few hundreds of femtoseconds following the IR laser pump pulse excitation. On longer time scales this excitation gave rise to subsequent irreversible transformations of the magnetic domain structure. Under our specific experimental conditions, it took about 2 ns before the magnetization started to recover. After about 5 ns the previously ordered stripe domain structure had evolved into a disordered labyrinth domain structure. Surprisingly, we observe after about 7 ns the occurrence of a partially ordered stripe domain structure reoriented into a novel direction. It is this domain structure in which the samples magnetization stabilizes as revealed by scattering patterns recorded long after the initial pump-probe cycle. Using micromagnetic simulations we can explain this observation based on changes of the magnetic anisotropy going along with heat dissipation in the film.


Structural Dynamics | 2017

Multi-color imaging of magnetic Co/Pt heterostructures

Felix Willems; Clemens von Korff Schmising; D. Weder; Christian M. Günther; Michael D. Schneider; Bastian Pfau; Sven Meise; Erik Guehrs; Jan Geilhufe; Alaa El Din Merhe; Emmanuelle Jal; Boris Vodungbo; Jan Lüning; B. Mahieu; Flavio Capotondi; Emanuele Pedersoli; D. Gauthier; Michele Manfredda; S. Eisebitt

We present an element specific and spatially resolved view of magnetic domains in Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonant small-angle scattering and coherent imaging with Fourier-transform holography reveal nanoscale magnetic domain networks via magnetic dichroism of Co at the M2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt. We demonstrate for the first time simultaneous, two-color coherent imaging at a free-electron laser facility paving the way for a direct real space access to ultrafast magnetization dynamics in complex multicomponent material systems.


Synchrotron Radiation News | 2013

Ultrafast Dynamics of Magnetic Domain Structures Probed by Coherent Free-Electron Laser Light

L. Müller; S. Schleitzer; C. Gutt; B. Pfau; S. Schaffert; Jan Geilhufe; C. von Korff Schmising; Michael Schneider; Christian M. Günther; Felix Büttner; Flavio Capotondi; Emanuele Pedersoli; S. Düsterer; H. Redlin; A. Al-Shemmary; Rolf Treusch; Judith Bach; Robert Frömter; Boris Vodungbo; J. Gautier; Philippe Zeitoun; Horia Popescu; Víctor López-Flores; N. Beaulieu; Fausto Sirotti; N. Jaouen; Gregory Malinowski; B. Tudu; K. Li; Jan Lüning

The free-electron laser (FEL) sources FLASH in Hamburg, LCLS at Stanford, and FERMI in Trieste provide XUV to soft X-ray radiation (FLASH and FERMI) or soft to hard X-ray radiation (LCLS) with unprecedented parameters in terms of ultrashort pulse length, high photon flux, and coherence. These properties make FELs ideal tools for studying ultrafast dynamics in matter on a previously unaccessible level. This paper first reviews results obtained at FEL sources during the last few years in the field of magnetism research. We start with pioneering experiments at FLASH demonstrating the feasibility of magnetic scattering at FELs [1, 2], then present pump–probe scattering experiments [3, 4] as well as the first FEL magnetic imaging experiments [5], and finally discuss a limitation of the scattering methods due to a quenching of the magnetic scattering signal by high-fluence FEL pulses [6]. All of the presented experiments exploit the X-ray magnetic circular dichroism effect [7, 8] to obtain element-specific magnetic scattering contrast, as known from synchrotron experiments [9–12].


Review of Scientific Instruments | 2013

Endstation for ultrafast magnetic scattering experiments at the free-electron laser in Hamburg

L. Müller; C. Gutt; S. Streit-Nierobisch; M. Walther; S. Schaffert; B. Pfau; Jan Geilhufe; Felix Büttner; Samuel Flewett; Christian M. Günther; S. Eisebitt; A. Kobs; M. Hille; Daniel Stickler; Robert Frömter; Hans Peter Oepen; Jan Lüning; G. Grübel

An endstation for pump-probe small-angle X-ray scattering (SAXS) experiments at the free-electron laser in Hamburg (FLASH) is presented. The endstation houses a solid-state absorber, optical incoupling for pump-probe experiments, time zero measurement, sample chamber, and detection unit. It can be used at all FLASH beamlines in the whole photon energy range offered by FLASH. The capabilities of the setup are demonstrated by showing the results of resonant magnetic SAXS measurements on cobalt-platinum multilayer samples grown on freestanding Si(3)N(4) membranes and pump-laser-induced grid structures in multilayer samples.


Synchrotron Radiation News | 2016

Imaging Non-Local Magnetization Dynamics

C. von Korff Schmising; Bastian Pfau; Michael D. Schneider; Christian M. Günther; D. Weder; F. Willems; Jan Geilhufe; E. Malm; L. Müller; Boris Vodungbo; Flavio Capotondi; Emanuele Pedersoli; Michele Manfredda; Jan Lüning; S. Eisebitt

Many fundamental processes in magnetism take place on a nanometer length and sub-picosecond time scale. An important example of such phenomena in magnetism is ultrafast, spin-polarized transport of laser-excited hot electrons, which is now being recognized as playing a crucial role for novel spintronic devices and for optically induced magnetic switching. Recent experimental examples include the demonstration of all-optical helicity dependent control of spin-polarized currents at interfaces [1], the design of novel and efficient terahertz emitters [2], and nanoscale spin reversal in chemically heterogeneous GdFeCo driven by non-local transfer of angular momentum [3]. In particular, for advanced information technologies with bit densities already exceeding 1 terabit per square inch with bit cell dimensions of (15 × 38 nm2) [4], it is of fundamental importance to understand and eventually control the mechanisms responsible for optically induced spin dynamics on the nanoscale.


Proceedings of SPIE | 2014

Dynamics and topological mass of skyrmionic spin structures (presentation video)

Christoforos Moutafis; Felix Büttner; André Bisig; Benjamin Krüger; C. A. F. Vaz; Michael Foerster; Mohamad-Assaad Mawass; Michael Schneider; Christian M. Günther; Jan Geilhufe; C. von Korff Schmising; J. Mohanty; B. Pfau; S. Schaffert; T. Schulz; Markus Weigand; Henk J. M. Swagten; Jörg Raabe; Mathias Kläui; S. Eisebitt

Skyrmions are topologically protected particle-like configurations, with a topological complexity described by their Skyrmion number. In magnetic systems, they have been numerically predicted to exhibit rich dynamics, such as the gyrotropic and breathing modes, dominated by their topology. Recent experimental advances brought their static manipulation well under control. However, their dynamical behaviour is largely unexplored experimentally. In this work, we provide with the first direct observation of eigenmode skyrmion dynamics. In particular, we present dynamical imaging data with high temporal and spatial resolution to demonstrate the GHz gyrotropic mode of a single skyrmion bubble, as well as the breathing-like behaviour of a pair of skyrmionic configurations. We use the observed dynamical behaviour to confirm the skyrmion topology and show the existence of an unexpectedly large inertia that is key for accurately describing skyrmion dynamics. Our results demonstrate new ways for experimentally observing skyrmion dynamics and provide a framework for describing their behaviour. Furthermore, the results outline a link between the dynamical behaviour of skyrmions and their distinct topological properties, with possible ramifications for skyrmionic spin structures research including technological applications.


Nature Physics | 2015

Dynamics and inertia of skyrmionic spin structures

Felix Büttner; Christoforos Moutafis; Michael D. Schneider; Benjamin Krüger; Christian M. Günther; Jan Geilhufe; C. v. Korff Schmising; J. Mohanty; Bastian Pfau; S. Schaffert; André Bisig; Michael Foerster; T. Schulz; C. A. F. Vaz; Jh Jeroen Franken; Henk J. M. Swagten; Mathias Kläui; S. Eisebitt


New Journal of Physics | 2013

High-resolution magnetic-domain imaging by Fourier transform holography at 21?nm wavelength

S. Schaffert; B. Pfau; Jan Geilhufe; Christian M. Günther; Michael Schneider; Clemens von Korff Schmising; S. Eisebitt

Collaboration


Dive into the Jan Geilhufe's collaboration.

Top Co-Authors

Avatar

S. Eisebitt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Christian M. Günther

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

S. Schaffert

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Büttner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael D. Schneider

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Pfau

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Guehrs

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge