Jan Haug Anonsen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Haug Anonsen.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Åshild Vik; Finn Erik Aas; Jan Haug Anonsen; Shaun Bilsborough; Andrea Schneider; Wolfgang Egge-Jacobsen; Michael Koomey
Protein glycosylation is an important element of biologic systems because of its significant effects on protein properties and functions. Although prominent within all domains of life, O-linked glycosylation systems modifying serine and threonine residues within bacteria and eukaryotes differ substantially in target protein selectivity. In particular, well-characterized bacterial systems have been invariably dedicated to modification of individual proteins or related subsets thereof. Here we characterize a general O-linked glycosylation system that targets structurally and functionally diverse groups of membrane-associated proteins in the Gram-negative bacterium Neisseria gonorrhoeae, the etiologic agent of the human disease gonorrhea. The 11 glycoproteins identified here are implicated in activities as varied as protein folding, disulfide bond formation, and solute uptake, as well as both aerobic and anaerobic respiration. Along with their common trafficking within the periplasmic compartment, the protein substrates share quasi-related domains bearing signatures of low complexity that were demonstrated to encompass sites of glycan occupancy. Thus, as in eukaryotes, the broad scope of this system is dictated by the relaxed specificity of the glycan transferase as well as the bulk properties and context of the protein-targeting signal rather than by a strict amino acid consensus sequence. Together, these findings reveal previously unrecognized commonalities linking O-linked protein glycosylation in distantly related life forms.
Journal of Proteome Research | 2012
Jan Haug Anonsen; Åshild Vik; Wolfgang Egge-Jacobsen; Michael Koomey
The bacterial human pathogen Neisseria gonorrhoeae expresses a general O-linked protein glycosylation (Pgl) system known to target at least 12 membrane-associated proteins. To facilitate a better understanding of the mechanisms, significance and function of this glycosylation system, we sought to further delineate the target proteome of the Pgl system. To this end, we employed immunoaffinity enrichment of glycoproteins using a monoclonal antibody against the glycan moiety. Enzymatically generated peptides were subsequently analyzed by MS to identify glycopeptides and glycosylation sites. In this way, we increase the total number of known glycoproteins in N. gonorrhoeae to 19. These new glycoproteins are involved in a wide variety of extracytoplasmic functions. By employing collision fragmentation, we mapped nine new glycosylation sites, all of which were serine. No target sequon was readily apparent, although attachment sites were most often localized with regions of low sequence complexity. Moreover, we found that 5 of the proteins were modified with more than one glycan. This work thus confirms and extends earlier observations on the structural features of Neisseria glycoproteins.
Infection and Immunity | 2012
Jan Haug Anonsen; Wolfgang Egge-Jacobsen; Finn Erik Aas; Bente Børud; Michael Koomey; Åshild Vik
ABSTRACT The zwitterionic phospho-form moieties phosphoethanolamine (PE) and phosphocholine (PC) are important components of bacterial membranes and cell surfaces. The major type IV pilus subunit protein of Neisseria gonorrhoeae, PilE, undergoes posttranslational modifications with these moieties via the activity of the pilin phospho-form transferase PptA. A number of observations relating to colocalization of phospho-form and O-linked glycan attachment sites in PilE suggested that these modifications might be either functionally or mechanistically linked or interact directly or indirectly. Moreover, it was unknown whether the phenomenon of phospho-form modification was solely dedicated to PilE or if other neisserial protein targets might exist. In light of these concerns, we screened for evidence of phospho-form modification on other membrane glycoproteins targeted by the broad-spectrum O-linked glycosylation system. In this way, two periplasmic lipoproteins, NGO1043 and NGO1237, were identified as substrates for PE addition. As seen previously for PilE, sites of PE modifications were clustered with those of glycan attachment. In the case of NGO1043, evidence for at least six serine phospho-form attachment sites was found, and further analyses revealed that at least two of these serines were also attachment sites for glycan. Finally, mutations altering glycosylation status led to the presence of pptA-dependent PC modifications on both proteins. Together, these results reinforce the associations established in PilE and provide evidence for dynamic interplay between phospho-form modification and O-linked glycosylation. The observations also suggest that phospho-form modifications likely contribute biologically at both intracellular and extracellular levels.
Molecular Microbiology | 2012
Åshild Vik; Marina Aspholm; Jan Haug Anonsen; Bente Børud; Norbert Roos; Michael Koomey
Type IV pili are surface organelles essential for pathogenicity of many Gram‐negative bacteria. In Neisseria gonorrhoeae, the major subunit of type IV pili, PilE, is a target of its general O‐linked glycosylation system. This system modifies a diverse set of periplasmic and extracellular gonococcal proteins with a variable set of glycans. Here we show that expression of a particular hexa‐histidine‐tagged PilE was associated with growth arrest. By studying intra‐ and extragenic suppressors, we found that this phenotype was dependent on pilus assembly and retraction. Based on these results, we developed a sensitive tool to identify factors with subtle effects on pilus dynamics. Using this approach, we found that glycan chain length has differential effects on the growth arrest that appears to be mediated at the level of pilin subunit–subunit interactions and bidirectional remodelling of pilin between its membrane‐associated and assembled states. Gonococcal pilin glycosylation thus plays both an intracellular role in pilus dynamics and potential extracellular roles mediated through type IV pili. In addition to demonstrating the effect of glycosylation on pilus dynamics, the study provides a new way of identifying factors with less dramatic effects on processes involved in type IV pilus biogenesis.
Journal of Bacteriology | 2016
Jan Haug Anonsen; Åshild Vik; Bente Børud; Raimonda Viburiene; Finn Erik Aas; Shani W. Aa. Kidd; Marina Aspholm; Michael Koomey
UNLABELLED Broad-spectrum O-linked protein glycosylation is well characterized in the major Neisseria species of importance to human health and disease. Within strains of Neisseria gonorrhoeae, N. meningitidis, and N. lactamica, protein glycosylation (pgl) gene content and the corresponding oligosaccharide structure are fairly well conserved, although intra- and interstrain variability occurs. The status of such systems in distantly related commensal species, however, remains largely unexplored. Using a strain of deeply branching Neisseria elongata subsp. glycolytica, a heretofore unrecognized tetrasaccharide glycoform consisting of di-N-acetylbacillosamine-glucose-di-N-acetyl hexuronic acid-N-acetylhexosamine (diNAcBac-Glc-diNAcHexA-HexNAc) was identified. Directed mutagenesis, mass spectrometric analysis, and glycan serotyping confirmed that the oligosaccharide is an extended version of the diNAcBac-Glc-based structure seen in N. gonorrhoeae and N. meningitidis generated by the successive actions of PglB, PglC, and PglD and glucosyltransferase PglH orthologues. In addition, a null mutation in the orthologue of the broadly conserved but enigmatic pglG gene precluded expression of the extended glycoform, providing the first evidence that its product is a functional glycosyltransferase. Despite clear evidence for a substantial number of glycoprotein substrates, the major pilin subunit of the endogenous type IV pilus was not glycosylated. The latter finding raises obvious questions as to the relative distribution of pilin glycosylation within the genus, how protein glycosylation substrates are selected, and the overall structure-function relationships of broad-spectrum protein glycosylation. Together, the results of this study provide a foundation upon which to assess neisserial O-linked protein glycosylation diversity at the genus level. IMPORTANCE Broad-spectrum protein glycosylation systems are well characterized in the pathogenic Neisseria species N. gonorrhoeae and N. meningitidis. A number of lines of evidence indicate that the glycan components in these systems are subject to diversifying selection and suggest that glycan variation may be driven in the context of glycosylation of the abundant and surface-localized pilin protein PilE, the major subunit of type IV pili. Here, we examined protein glycosylation in a distantly related, nonpathogenic neisserial species, Neisseria elongata subsp. glycolytica. This system has clear similarities to the systems found in pathogenic species but makes novel glycoforms utilizing a glycosyltransferase that is widely conserved at the genus level but whose function until now remained unknown. Remarkably, PilE pilin is not glycosylated in this species, a finding that raises important questions about the evolutionary trajectories and overall structure-function relationships of broad-spectrum protein glycosylation systems in bacteria.
Glycobiology | 2017
Jan Haug Anonsen; Bente Børud; Åshild Vik; Raimonda Viburiene; Michael Koomey
O-acetylation is a common modification of bacterial glycoconjugates. By modifying oligosaccharide structure and chemistry, O-acetylation has important consequences for biotic and abiotic recognition events and thus bacterial fitness in general. Previous studies of the broad-spectrum O-linked protein glycosylation in pathogenic Neisseria species (including N. gonorrhoeae and N. meningitidis) have revealed O-acetylation of some of their diverse glycoforms and identified the committed acetylase, PglI. Herein, we extend these observations by using mass spectrometry to examine a complete set of all glycan variants identified to date. Regardless of composition, all glycoforms and all sugars in the oligosaccharide are subject to acetylation in a PglI-dependent fashion with the only exception of di-N-acetyl-bacillosamine. Moreover, multiple sugars in a single oligosaccharide could be simultaneously modified. Interestingly, O-acetylation status was found to be correlated with altered chain lengths of oligosaccharides expressed in otherwise isogenic backgrounds. Models for how this unprecedented phenomenon might arise are discussed with some having potentially important implications for the membrane topology of glycan O-acetylation. Together, the findings provide better insight into how O-acetylation can both directly and indirectly govern glycoform structure and diversity.
Journal of Chromatography A | 2016
Christiane Kruse Fæste; Anders Moen; Björn Schniedewind; Jan Haug Anonsen; Jelena Klawitter; Uwe Christians
The parasite Anisakis simplex is present in many marine fish species that are directly used as food or in processed products. The anisakid larvae infect mostly the gut and inner organs of fish but have also been shown to penetrate into the fillet. Thus, human health can be at risk, either by contracting anisakiasis through the consumption of raw or under-cooked fish, or by sensitisation to anisakid proteins in processed food. A number of different methods for the detection of A. simplex in fish and products thereof have been developed, including visual techniques and PCR for larvae tracing, and immunological assays for the determination of proteins. The recent identification of a number of anisakid proteins by mass spectrometry-based proteomics has laid the groundwork for the development of two quantitative liquid chromatography-tandem mass spectrometry methods for the detection of A. simplex in fish that are described in the present study. Both, the label-free semi-quantitative nLC-nESI-Orbitrap-MS/MS (MS1) and the heavy peptide-applying absolute-quantitative (AQUA) LC-TripleQ-MS/MS (MS2) use unique reporter peptides derived from anisakid hemoglobin and SXP/RAL-2 protein as analytes. Standard curves in buffer and in salmon matrix showed limits of detection at 1μg/mL and 10μg/mL for MS1 and 0.1μg/mL and 2μg/mL for MS2. Preliminary method validation included the assessment of sensitivity, repeatability, reproducibility, and applicability to incurred and naturally-contaminated samples for both assays. By further optimization and full validation in accordance with current recommendations the LC-MS/MS methods could be standardized and used generally as confirmative techniques for the detection of A. simplex protein in fish.
Molecular Microbiology | 2014
Bente Børud; Jan Haug Anonsen; Raimonda Viburiene; Ellen Hanne Cohen; Anne Berit Samuelsen; Michael Koomey
Glycans manifest in conjunction with the broad spectrum O‐linked protein glycosylation in species within the genus Neisseria display intra‐ and interstrain diversity. Variability in glycan structure and antigenicity are attributable to differences in the content and expression status of glycan synthesis genes. Given the high degree of standing allelic polymorphisms in these genes, the level of glycan diversity may exceed that currently defined. Here, we identify unique protein‐associated disaccharide glycoforms that carry N‐acetylglucosamine (GlcNAc) at their non‐reducing end. This altered structure was correlated with allelic variants of pglH whose product was previously demonstrated to be responsible for the expression of glucose (Glc)‐containing disaccharides. Allele comparisons and site‐specific mutagenesis showed that the presence of a single residue, alanine at position 303 in place of a glutamine, was sufficient for GlcNAc versus Glc incorporation. Phylogenetic analyses revealed that GlcNAc‐containing disaccharides may be widely distributed within the pgl systems of Neisseria particularly in strains of N. meningitidis. Although analogous minimal structural alterations in glycosyltransferases have been documented in association with lipopolysaccharide and capsular polysaccharide variability, this appears to be the first example in which such changes have been implicated in glycan diversification within a bacterial protein glycosylation system.
Scientific Reports | 2018
Ravi Chand Bollineni; Christian J. Koehler; Randi Elin Gislefoss; Jan Haug Anonsen; Bernd Thiede
Workflows capable of determining glycopeptides in large-scale are missing in the field of glycoproteomics. We present an approach for automated annotation of intact glycopeptide mass spectra. The steps in adopting the Mascot search engine for intact glycopeptide analysis included: (i) assigning one letter codes for monosaccharides, (ii) linearizing glycan sequences and (iii) preparing custom glycoprotein databases. Automated annotation of both N- and O-linked glycopeptides was proven using standard glycoproteins. In a large-scale study, a total of 257 glycoproteins containing 970 unique glycosylation sites and 3447 non-redundant N-linked glycopeptide variants were identified in 24 serum samples. Thus, a single tool was developed that collectively allows the (i) elucidation of N- and O-linked glycopeptide spectra, (ii) matching glycopeptides to known protein sequences, and (iii) high-throughput, batch-wise analysis of large-scale glycoproteomics data sets.
Physiological Reports | 2016
Kristin Halvorsen Hortemo; Per Kristian Lunde; Jan Haug Anonsen; Heidi Kvaløy; Morten Munkvik; Tommy Aune Rehn; Ivar Sjaastad; Ida G. Lunde; Jan Magnus Aronsen; Ole M. Sejersted
Protein O‐GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O‐GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O‐GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O‐GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O‐GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O‐GlcNAc transferase (OGT), O‐GlcNAcase (OGA), and glutamine fructose‐6‐phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O‐GlcNAcylation in rat soleus and EDL. There was a striking increase in O‐GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O‐GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O‐GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O‐GlcNAcylation level, indicating that aberrant O‐GlcNAcylation cannot explain the skeletal muscle dysfunction in HF. Human skeletal muscle displayed extensive protein O‐GlcNAcylation that by large mirrored the fiber‐type‐related O‐GlcNAcylation pattern in rats, suggesting O‐GlcNAcylation as an important signaling system also in human skeletal muscle.