Jan Hostaša
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Hostaša.
Journal of Materials Chemistry C | 2014
Laura Esposito; Jan Hostaša; Andreana Piancastelli; Guido Toci; Daniele Alderighi; Matteo Vannini; Thierry Epicier; Annie Malchère; G. Alombert-Goget; G. Boulon
Thermal effects in transparent laser crystals and ceramics are generally an unwanted consequence of the pumping process: temperature gradients give rise to an unevenly distributed refractive index variation and a distortion of the optical surfaces crossed by the laser beam (thermal lens); birefringence due to thermomechanical stress can cause depolarization losses; and absorption from the ground level usually increases with temperature in quasi-three-level systems. All these effects can seriously impair laser performance, especially in high-power devices. Layered structures with a tailored modulation of the doping level can be used to reduce the peak temperature, the temperature gradients and also the thermally induced deformation of the laser material, thus mitigating the overall thermal effects. In the present work, structures comprising two and three layers of different compositions (pure YAG/10 at% Yb:YAG and pure YAG/10 at% Yb:YAG/pure YAG) were designed with a view to control deformation and stresses, and to reduce the thermal lensing effect. The multilayered samples were assembled by linear and cold isostatic pressing, and co-sintered under a high vacuum in a clean-atmosphere furnace. The microstructure of the layered samples obtained was characterized by FEG SEM, ESEM and TEM. The Yb diffusion profile across the doped/undoped interface was identified and related to the lasers output power. An internal optical transmittance up to 96% was obtained. A laser output power up to 5 W, with a slope efficiency as high as 74.3%, was also achieved.
POWDERS AND GRAINS 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MICROMECHANICS OF GRANULAR MEDIA | 2009
Willi Pabst; Eva Gregorová; Jan Hostaša
Nanofluids exhibit enhanced thermal conductivity with decreasing particle size, while nanocrystalline solids show a thermal conductivity reduction with decreasing grain size. Both phenomena can be modeled as being due to a boundary phase acting as a thermal bridge or barrier, respectively. In this paper a new phase mixture model is presented, based on a “mixed average” of the upper and lower Wiener bounds. It is shown that in the case of alumina‐water nanofluids our model is able to describe very well the experimentally measured data for nanofluids with 38, 25 and 13 nm alumina particles, when the solid‐like boundary phase is assumed to possess ice‐like thermal conductivity (2 W/mK) and a thickness of 1–5 nm. For nanocrystalline alumina (assuming a grain boundary with thickness 1 nm and a glass‐like conductivity value of 1.1 W/mK), it is shown that significant grain size effects cannot be expected for grain sizes above 100 nm and a more than 10% conductivity reduction requires grain sizes below 50 nm.
Proceedings of SPIE | 2016
Guido Toci; Antonio Lapucci; Marco Ciofini; Laura Esposito; Jan Hostaša; L. A. Gizzi; L. Labate; Paolo Ferrara; Angela Pirri; Matteo Vannini
The laser, optical and spectroscopic properties of multilayer Yb:YAG ceramic structures, differently activated, were investigated. The structures were designed by means of Finite Element Modeling, adjusting the doping distributions to reduce peak temperature, surface deformation and thermally induced stresses, depending on the pump and cooling geometry. Two ceramic processes were used, i.e. dry pressing of spray-dried powders (SD) and tape casting (TC), resulting in different defect density and size distribution: TC gives a more uniform transmission, whereas SD results in larger, unevenly scattered defects. The spectroscopic properties were found independent from the production process. The laser performance has been characterized under high intensity pumping in a longitudinally diode pumped laser cavity, comparing the behavior of the different structures in terms of slope efficiency, stability under increasing thermal load, spatial uniformity of laser emission. Slope efficiency values as high as 58% in Quasi-CW pumping conditions and 54% in CW conditions was measured in two-layers structures. The production process and the number of layers influenced the behavior of the samples, in particular regarding the spatial uniformity of the laser emission. Samples made by tape casting have shown overall a better thermal stability with respect to the samples made by spray drying.
Proceedings of SPIE | 2013
Antonio Lapucci; Marco Ciofini; Laura Esposito; Paolo Ferrara; L. A. Gizzi; Jan Hostaša; L. Labate; Angela Pirri; Guido Toci; Matteo Vannini
Slabs with non-uniform doping distribution are studied with the aim of reducing thermal deformations in high-energy high-average-power Yb:YAG slab systems. We present a numerical analysis based on Finite Element Mesh (FEM) methods suitable to model non-uniform devices. The thermal variation of the refractive index, the end-faces deformations and the photo-elastic effect have been calculated in order to estimate the total thermal-lens effect. The stress distributions are also obtained. Some results of this numerical approach are compared to experimental thermal lens measurements in a simple geometry for both uniform and structured samples, in order to validate the numerical procedures. Finally we compare numerical simulations for different single- or double-sided pumping and cooling geometries. They show that structured slabs can reduce thermal gradients with respect to uniformly doped means with comparable absorption and geometry. This means a reduction of thermal lens effect and thus an increase of maximum allowed pump power loading. Previous literature reports some work made with structured slabs where higher doping was located in layers with lower pump radiation levels, in order to get a more uniform absorption. Interestingly our modeling indicates that reduced thermal effects are instead obtained when a higher doping is located close to the cooled surfaces.
Optical Materials Express | 2017
Sudeep Jung Pandey; Mauro Martinez; Jan Hostaša; Laura Esposito; Matthieu Baudelet; Romain Gaume
Transparent ceramics are important optical materials with applications in street lighting, high-strength windows, electro- and magneto-optical isolators, high-power laser gain media and radiation detectors. Their fabrication most often relies on powder densification techniques carried out at high temperatures, sometimes promoted by sintering additives. Here, we describe the application of laser-induced breakdown spectroscopy (LIBS) for following the concentration levels of silica used as a sintering agent in the fabrication of yttrium aluminum garnet (YAG) transparent ceramics. The sensitivity limit of our protocol reaches a few tens of ppm of silica in YAG ceramic samples, showing that LIBS can be implemented reliably for the rapid assessment of sintering additives in advanced ceramic processing.
Optical Engineering | 2016
Jan Hostaša; Valentina Biasini; Andreana Piancastelli; Matteo Vannini; Guido Toci
Abstract. Yb:YAG ceramic solid-state laser gain media have been of growing interest for high-repetition rate and high-power lasers during the last few years. A great advantage of ceramic technology compared with that of single crystals is the flexibility of shaping methods allowing the production of near-net-shape components with a well-defined internal structure. A favorable dopant distribution can enhance laser efficiency by mitigating thermal effects. The presented work reports on Yb:YAG transparent ceramics composed of layers with different Yb doping produced by two different shaping methods: dry pressing of spray-dried powders and tape casting, all sintered under high vacuum. The selected geometry of materials was based on numerical simulations. Optical quality of produced ceramics was characterized and discussed in connection with the microstructure and laser emission results. Output power of nearly 7 W and slope efficiency of 58.1% were obtained in quasi-continuous wave regime from bilayered 0% to 10% Yb:YAG. In the case of multilayered materials, higher scattering losses were observed. The comparison of the two processing methods highlighted that the tape-cast materials provided higher optical uniformity and the diffusion zone between the single layers with different dopant content was about 150 μm compared to about 250 μm in samples produced by pressing of powders.
Optics and Measurement Conference 2014 | 2015
Tereza Uhlířová; Jan Hostaša; Willi Pabst; Laura Esposito
The microstructure of transparent yttrium-aluminum garnet (YAG) ceramics is characterized using different microstructural descriptors, with special focus on grain size numbers. Both linear and planar grain size numbers are used to describe the dependence of the average grain size on Yb dopant content (0-10 at.%), sintering additive (tetraethyl orthosilicate, TEOS) content (0.3-0.5 wt.%) and firing time. Although the two grain size numbers are very close for the materials studied (with ratios very close to unity, around 0.987 ± 0.109), these two numbers are principally independent and provide complementary microstructural information. Their relations to other microstructural descriptors (interface density, mean curvature integral density, mean chord length, Jeffries size) are discussed throughout the text. It is found that Yb doping of more than 3 at.% has a grain-growth-inhibiting effect (after sufficiently long firing times), but differences in the TEOS content between 0.3 and 0.5 wt.% do not have any sensible effect. The largest effect on the microstructure is exerted by the firing time (with prolonged firing times leading to grain growth), but with higher Yb doping the effect of firing time on the grain size becomes less pronounced: for YAG samples without Yb doping, increasing the firing time by a factor of 8 (from 2 h to 16 h), deceases the grain size number by 33.2-35.0 %, whereas with a Yb dopant content of 10 at.%, the corresponding decrease in the grain size number is only 8.7-10.0 %. These findings are fully corroborated using the other microstructural descriptors.
Advances in Science and Technology | 2010
Willi Pabst; Jan Hostaša
In nanocrystalline materials the grain boundaries must be considered as regions of finite thickness with properties different from the crystalline bulk material present in the crystallite cores. Thus, dense (i.e. pore-free) single-phase nanocrystalline materials can be considered as quasi-twophase systems whose effective properties can be calculated when quantitative thickness information is available and the property value of the grain boundary phase can be reliably estimated. Similarly, dense two-phase nanocomposites may be considered as quasi-three-phase systems and their effective properties can be predicted using an analogous phase mixture modeling approach. In this contribution this is done for the thermal conductivity of alumina-zirconia nanocomposites. A twostage homogenization procedure is applied, consisting of a first step in which the alumina-zirconia composite is treated as a symmetric-cell material, and a second step in which the highly disordered grain boundary phase is treated as a matrix-phase, coating the crystallite cores. The individual averaging steps are discussed with respect to the two- and three-point bounds, and the resulting grain size dependence is compared with that of pure alumina and zirconia, and literature data.
Proceedings of SPIE | 2016
Jan Hostaša; Laura Esposito; Valentina Biasini; Andreana Piancastelli; Matteo Vannini; Guido Toci
The use of Yb:YAG ceramic gain media in solid state lasers has been of growing interest for high repetition rate and high power lasers. Probably the most important advantage of ceramic production technology in comparison with that of single crystals is the flexibility of shaping methods that allow the production of near-net-shape components with a welldefined internal structure. In the case of Yb:YAG with dopant distribution designed accordingly to the pumping and cooling geometry the efficiency of the laser device can be enhanced by mitigating thermal lensing effects. The presented work reports on Yb:YAG transparent ceramics composed of layers with different Yb doping produced by two different shaping methods: dry pressing of spray-dried powders and tape casting, all sintered under high vacuum. The selected geometry of materials was based on numerical simulations. Microstructure of the produced materials was characterized by SEM and EDX with a particular attention to the dopant content across the layers. The optical quality of produced ceramics was characterized and discussed in connection with the microstructure and laser emission results. Output power of nearly 7 W and slope efficiency 58.1 % were obtained in QCW regime from bilayered 0-10 %Yb:YAG. In the case of multilayered materials higher scattering losses were observed. The comparison between the two processing methods highlighted that the tape-cast materials provided higher optical uniformity and the diffusion zone between the single layers with different dopant content was about 150 nm compared to about 250 nm in samples produced by pressing of powders.
Proceedings of SPIE | 2015
Guido Toci; Antonio Lapucci; Marco Ciofini; Laura Esposito; Jan Hostaša; Andreana Piancastelli; L. A. Gizzi; L. Labate; Paolo Ferrara; Angela Pirri; Matteo Vannini
Significant improvements in efficiency in high power, high repetition rate laser systems should come from the use of ceramic laser active elements suitably designed to mitigate the thermal and thermo-mechanical effects (TEs and TMEs) deriving from the laser pumping process. Laser active media exhibiting a controlled and gradual distribution of the active element(s) could therefore find useful applications in the laser-driven inertial confinement fusion systems, which are considered among the most promising energy source of the future (ultraintense laser pulses), and in medical applications (ultrashort laser pulses) The present work explores the flexibility of the ceramic process for the construction of YAG (Y3Al5O12) ceramic laser elements with a controlled distribution of the Yb doping, in view of the realization of structures modelled to respond to specific application. Two processing techniques are presented to prepare layered structures with a tailored modulation of the doping level, with the goal of reducing the peak temperature, the temperature gradients and also the thermally-induced deformation of the laser material, thus mitigating the overall thermal effects. Tape casting in combination with thermal compression of ceramic tapes with a varying doping level is one of the presented techniques. To make this process as more adaptable as possible, commercial micrometric ceramic powders have been used. The results are compared with those obtained using nanometric powders and a shaping process based on the subsequent pressing of spray dried powders with a different doping level. Laser performance has been characterized in a longitudinally diode pumped laser cavity. The laser efficiency under high thermal load conditions has been compared to those obtained from samples with uniform doping, and for samples obtained with press shaping and tape casting, under the same conditions.