Jan Koschorreck
Environment Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Koschorreck.
Archive | 2014
Karin Deutsch; Delphine Leroy; Claude Belpaire; Klaas den Haan; Branislav Vrana; Helen Clayton; Georg Hanke; Marina Ricci; Andrea Held; Bernd Manfred Gawlik; Marc Babut; Olivier Perceval; Peter Lepom; Christiane Heiss; Jan Koschorreck; Simon O'Toole; Sara Valsecchi; Stefano Polesello; Mario Carere; Dorien ten Hulscher; Eric M. J. Verbruggen; Valeria Dulio; Norman Green; Lucia Viñas
This Technical Guidance Document on Biota Monitoring (the Implementation of EQSbiota) aims to facilitate the implementation of environmental quality standards (EQS) in biota under the Water Framework Directive by addressing in particular the sampling strategies appropriate for monitoring programmes designed to assess compliance with biota EQS. It is Guidance Document No. 32 in the series of guidance documents prepared to support the Common Implementation Strategy (CIS) for the Water Framework Directive. It elaborates extensively on the content of Guidance Document No. 25 on Chemical Monitoring in Sediment and Biota under the Water Framework Directive, and is complemented by Guidance Document No. 33, the Technical Guidance Document on Analytical Methods for Biota Monitoring. Guidance Documents 32 and 33 together address the requirement for guidance on biota monitoring mentioned in Article 3(8a) of Directive 2008/105/EC as amended by Directive 2013/39/EU. The original Directive 2008/105/EC included biota standards for mercury, hexachlorobenzene and hexachlorobutadiene. In Directive 2013/39/EU, biota EQS were introduced for three other existing priority substances (fluoranthene, polyaromatic hydrocarbons and brominated diphenylethers), and set for four new priority substances (dicofol, perfluorooctane sulfonic acid and its derivatives, hexabromocyclododecane, and heptachlor/heptachlor epoxide). This guidance document takes into account the fact that trend monitoring in sediment and/or biota is required for several other priority substances as specified in Article 3(6), and indicates how trend monitoring data can be used to check compliance with biota EQS, but does not elaborate on trend monitoring as such. This document constitutes guidance and Member States are therefore not legally required to follow the recommendations contained in it. Member States are, however, required to use methods compliant with the requirements of the Environmental Quality Standards Directive 2008/105/EC and the Quality Assurance/Quality Control Directive 2009/90/EC.
Environmental Science & Technology | 2012
Bikram Subedi; Bowen Du; C. Kevin Chambliss; Jan Koschorreck; Heinz Rüdel; Markus Quack; Bryan W. Brooks; Sascha Usenko
German Environment Specimen Bank (GESB) fish tissue samples, collected from 14 different GESB locations, were analyzed for 15 pharmaceuticals, 2 pharmaceutical metabolites, and 12 personal care products. Only 2 pharmaceuticals, diphenhydramine and desmethylsertraline, were measured above MDL. Diphenhydramine (0.04-0.07 ng g(-1) ww) and desmethylsertraline (1.65-3.28 ng g(-1) ww) were measured at 4 and 2 locations, respectively. The maximum concentrations of galaxolide (HHCB) (447 ng g(-1) ww) and tonalide (AHTN) (15 ng g(-1) ww) were measured at the Rehlingen sampling site in the Saar River. A significant decrease in HHCB and AHTN fish tissue concentrations was observed from 1995 to 2008 at select GESB sampling sites (r(2) = 0.69-0.89 for galaxolide and 0.89-0.97 for tonalide with p < 0.003). Galaxolide and tonalide fish tissue concentrations in Germany were ∼19× and ∼28× lower, respectively, as compared to fish tissue concentrations measured in a United States nationwide PPCP study conducted in 2006. Proximity of the sampling locations to the upstream wastewater treatment plant discharging point and mean annual flow at the sampling location were found to significantly predict galaxolide and tonalide fish tissue concentrations (HHCB: r(2) = 0.79, p = 0.021 and AHTN: r(2) = 0.81, p = 0.037) in Germany.
Environmental Science & Technology | 2013
Leo W. Y. Yeung; Shona J. Robinson; Jan Koschorreck; Scott A. Mabury
A total of 420 human plasma samples from two cities (Halle and Münster, Germany), collected between 1982 and 2009, were analyzed for a suite of PFCAs (C6-C12) and selected PFCA precursors (4:2-, 4:2/6:2-, 6:2-, 6:2/8:2-, 8:2-, 8:2/10:2-, and 10:2-diPAPs). PFCAs (C7-C11 and C13) were detected in over 80% of the samples (<0.005-39.4 ng/mL), while C12 PFCA was detected in fewer than 10% of the samples. In a range of 10-46% of the samples, 4:2-, 4:2/6:2-, 6:2, and 8:2-diPAPs were identified at concentrations of <0.0002-0.687 ng/mL; fewer than 10% of the samples had detectable 10:2-diPAP. Temporal trends (2000-2009) showed increasing concentrations of PFNA, PFDA, and PFUnDA, whereas PFOA concentrations were decreasing. Calculated population halving time for PFOA varied between 8.2-14.5 years, which contrasts to the generally accepted value of 3.8 years. This suggests an ongoing or additional exposure to PFOA or one of its precursor compounds. DiPAPs, known to metabolize rapidly to PFCAs, were detected in a significant number of samples and at concentrations that have not declined significantly over the past half-decade. The evidence suggests they have contributed to the continued presence of the longer chain PFCAs and perhaps contribute to the slow decline of PFOA.
International Journal of Hygiene and Environmental Health | 2011
Thomas Göen; Lorenz Dobler; Jan Koschorreck; Johannes Müller; Gerhard Andreas Wiesmüller; Hans Drexler; Marike Kolossa-Gehring
The exposure of the general population to phthalates is of increasing public health concern. Variations in the internal exposure of the population are likely, because the amounts, distribution and application characters of the phthalate use change over time. Estimating the chronological sequences of the phthalate exposure, we performed a retrospective human biomonitoring study by investigating the metabolites of the five most prominent phthalates in urine. Therefore, 24h-urine samples from the German Environmental Specimen Bank (ESB) collected from 240 subjects (predominantly students, age range 19-29 years, 120 females, 120 males) in the years 2002, 2004, 2006 and 2008 (60 individuals each), were analysed for the concentrations of mono-n-butyl phthalate (MnBP) as metabolite of di-n-butyl phthalate (DnBP), mono-iso-butyl phthalate (MiBP) as metabolite of di-iso-butyl phthalate (DiBP), mono-benzyl phthalate (MBzP) as metabolite of butylbenzyl phthalate (BBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and mono-(2-carboxymethyl hexyl) phthalate (2cx-MMHxP) as metabolites of di(2-ethylhexyl) phthalate (DEHP), monohydroxylated (OH-MiNP), monooxidated (oxo-MiNP) and monocarboxylated (cx-MiNP) mono-iso-nonylphthalates as metabolites of di-iso-nonyl phthalates (DiNP). Based on the urinary metabolite excretion, together with results of a previous study, which covered the years 1988-2003, we investigated the chronological sequences of the phthalate exposure over two decades. In more than 98% of the urine samples metabolites of all five phthalates were detectable indicating a ubiquitous exposure of people living in Germany to all five phthalates throughout the period investigated. The medians in samples from the different years investigated are 65.4 (2002), 38.5 (2004), 29.3 (2006) and 19.6 μg/l (2008) for MnBP, 31.4 (2002), 25.4 (2004), 31.8 (2006) and 25.5 μg/l (2008) for MiBP, 7.8 (2002), 6.3 (2004), 3.6 (2006) and 3.8 μg/l (2008) for MBzP, 7.0 (2002), 5.6 (2004), 4.1 (2006) and 3.3 μg/l (2008) for MEHP, 19.6 (2002), 16.2 (2004), 13.2 (2006) and 9.6 μg/l (2008) for 5OH-MEHP, 13.9 (2002), 11.8 (2004), 8.3 (2006) and 6.4 μg/l (2008) for 5oxo-MEHP, 18.7 (2002), 16.5 (2004), 13.8 (2006) and 10.2 μg/l (2008) for 5cx-MEPP, 7.2 (2002), 6.5 (2004), 5.1 (2006) and 4.6 μg/l (2008) for 2cx-MMHxP, 3.3 (2002), 2.8 (2004), 3.5 (2006) and 3.6 μg/l (2008) for OH-MiNP, 2.1 (2002), 2.1 (2004), 2.2 (2006) and 2.3 μg/l (2008) for oxo-MiNP and 4.1 (2002), 3.2 (2004), 4.1 (2006) and 3.6 μg/l (2008) for cx-MiNP. The investigation of the time series 1988-2008 indicates a decrease of the internal exposure to DnBP by the factor of 7-8 and to DEHP and BzBP by the factor of 2-3. In contrast, an increase of the internal exposure by the factor of 4 was observed for DiNP over the study period. The exposure to DiBP was found to be stable. In summary, we found decreases of the internal human exposure for legally restricted phthalates whereas the exposure to their substitutes increased. Future investigations should verify these trends. This is of increasing importance since the European Commission decided to require ban or authorization from 1.1.2015 for DEHP, DnBP, DiBP and BzBP according to REACh Annex XIV.
Toxicology Letters | 2002
Jan Koschorreck; Claudia Koch; Ines Rönnefahrt
The pharmacological nature of veterinary medicinal products, frequent application rates and use on a large scale for livestock production sensitizes regulation authorities for environmental concern. Consequently, in the European Union legal requirements plus guidance for an Environmental Risk Assessment of veterinary pharmaceuticals have been established. Applicants of new veterinary medicinal products have to provide an ecotoxicity report according to a guidance document which rests upon a logical, tiered approach with a cut-off trigger between a basic characterisation of the veterinary medicinal product and an in-depth assessment of its fate and ecotoxic effects. The outcome of this assessment is the establishment of the environmental risk that may arise from the use of the VMP under question. Contamination of the environment can be reduced by appropriate risk mitigation measures, e.g. limiting the application rate, the amount of contaminated manure being spread on agricultural lands or the access of treated pasture animals to surface waters.
Environmental Science & Technology | 2013
Leo W. Y. Yeung; Shona J. Robinson; Jan Koschorreck; Scott A. Mabury
A total of 420 human plasma from two cities (Halle and Münster, Germany) collected between 1982 and 2009, were analyzed for a suite of PFSAs (C4, C6, C8, C10) and selected PFOS precursors (MeFOSAA, EtFOSAA, FOSAA, di-SAmPAP). Among these target analytes, only di-SAmPAP was used in consumer products. PFSAs (C6 and C8), MeFOSAA, EtFOSAA, and FOSAA were detected in over 95% of the samples (<0.0011-116.0 ng/mL), PFDS was detected in approximately 40% of the samples (<0.005-0.0998 ng/mL), and di-SAmPAP was detected in 17% of the samples (<0.005-0.0137 ng/mL). Significant positive correlations were found between PFOS and PFHxS, MeFOSAA, EtFOSAA, and FOSAA. Temporal trends of decreasing concentration were identified for PFOS, MeFOSAA, EtFOSAA, and FOSAA, but not for PFHxS. Di-SAmPAP, a common food-contact paper surfactant and expected PFOS precursor, was detected infrequently (25% in samples prior to 2000) in samples before 2006. Population halving times of PFOS, MeFOSAA, EtFOSAA, and FOSAA were estimated. The observed reduction of these chemicals over time in human plasma is presumably related to the phase-out of POSF-based products beginning in 2000. The detection of di-SAmPAP in human sera is significant because this chemical is expected to be metabolized or degraded to PFOS in humans and the environment. Our detection of di-SAmPAP is the first confirmation of human exposure to this commercially available product which is a plausible source of PFOS in humans.
Integrated Environmental Assessment and Management | 2008
Stefan A.E. Kools; Alistair B.A. Boxall; Johann F. Moltmann; Gareth Bryning; Jan Koschorreck; Thomas Knacker
ABSTRACT The most likely entry pathways of veterinary pharmaceuticals to the environment are via slurry or manure from intensively reared animals to soil and via dung or urine from animals grazing on pasture. These pathways may result in contamination of surface water via runoff or leaching and drainage. Direct entry into water may occur by defecation by pasture animals or by companion animals. In addition, application of medicines for aquaculture is important for a limited number of veterinary medicinal products. For a large number of veterinary medicinal products, consistent data on the environmental risk have never been generated. In this project, a simple risk-based ranking procedure was developed that should allow assessing the potential for environmental risks of active substances of veterinary medicinal products. In the European Union approximately 2000 products containing 741 active substances were identified. In the prescreening step and in agreement with the technical guidelines released by the European Medicines Agency, 294 natural substances, complex mixtures, and substances with low expected exposure were exempted from the ranking procedure. For 233 active substances, sufficient information was collated on 4 exposure scenarios: Intensively reared animals, pasture animals, companion animals, and aquaculture. The ranking approach was performed in 4 phases: 1) usage estimation; 2) characterization of exposure to soil, dung, surface water, and aquatic organisms depending on exposure scenarios; 3) characterization of effects based on therapeutical doses; and 4) risk characterization, which is the ratio of exposure to effects (risk index), and ranking. Generally, the top-ranked substances were from the antibiotic and parasiticide groups of veterinary medicines. Differences occurred in the ranking of substances in soil via application to either intensively reared or pasture animals. In intensive rearing, anticoccidia, for example, are used as feed-administered medicines (feed additives) in comparatively large doses over a long time. For pasture animals, these substances are used less, if at all, and therefore receive lower ranks. Besides that, the risk indices for the aquatic compartment are large for substances used in aquaculture or applied to companion animals. In conclusion, the ranking scheme developed for this project provided a scientifically based and pragmatic means of assessing the relative priority of veterinary medicines for further detailed risk assessment. The outcome of this project will support pharmaceutical industries and competent authorities when seeking authorization for market applications of veterinary pharmaceutical products.
Environmental Science & Technology | 2012
Roland Klein; Martina Bartel-Steinbach; Jan Koschorreck; Martin Paulus; Kathrin Tarricone; Diana Teubner; Gerhard Wagner; Thomas Weimann; Michael Veith
Collecting bird eggs is an established method of biomonitoring for specific pollution hazards. One of the most critical problems with this method is the extreme biological variability in bird eggs, but standardizing the collection and preservation of eggs can reduce these problems. Furthermore, standard practices are required so that the results can be compared among studies because mistakes cannot be corrected by laboratory analysis. Therefore, a standard procedure for collecting and preserving bird eggs may be necessary. The objective of this review is to investigate the current standard of quality assurance in the field by analyzing 86 peer-reviewed papers describing egg collection and use for aquatic birds. We show that little attention has been paid to standardizing how eggs are collected and stored in the field. Important information is often absent, including crucial aspects of sample collection and preservation, such as the freshness of the eggs, the position of the eggs in the laying sequence, the selection criteria, random sampling, and the duration and temperature of transport. Potential standards are suggested and discussed as a foundation for the development of quality assurance standards in the field.
Journal of Hazardous Materials | 2016
Juhae Sohn; Su Jin Kim; Jan Koschorreck; Younglim Kho; Kyungho Choi
Low molecular weight phthalates, such as diethyl phthalate (DEP), benzyl butyl phthalate (BBzP), or diisobutyl phthalate (DiBP), are suspected to disrupt endocrine system. However, their adverse effects on sex steroid hormones and underlying mechanisms are not well-documented. The aim of this study is to investigate the effects of major low molecular weight phthalates (LMWPs), i.e., DEP, BBzP, and DiBP, and their hydrolytic metabolites, on sex steroid hormone system, employing male zebrafish and/or a human adrenocortical carcinoma (H295R) cell. In male zebrafish, 14-day exposure to DEP, BBzP, or DiBP significantly decreased testosterone (T) concentrations. All test compounds significantly up-regulated cyp19a gene expression, and down-regulated star and 3β hsd genes in the male fish. In H295R cell, all test compounds except monoisobutyl phthalate (MiBP) reduced T concentrations and increased E2/T ratio. Gene expression changes in H295R cell, e.g., significant down-regulation of StAR gene and up-regulation of CYP19A gene, supported depressed synthesis of sex hormones in the adrenal cell. Our results show that not only DEP, BBzP, and DiBP, but also their hydrolytic metabolites disrupt sex hormone balances through modulating key steroidogenic genes in the human adrenal cells and in zebrafish.
Environmental Science and Pollution Research | 2015
Jan Koschorreck; Christiane Heiss; Jörg Wellmitz; Annette Fliedner; Heinz Rüdel
Since the 1970s, environmental specimen banks (ESB) have emerged in many countries. Their highly standardised sampling and archiving strategies make them a valuable tool in tracing time trends and spatial distributions of chemicals in ecosystem compartments. The present article intends to highlight the potential of ESBs for regulatory agencies in the European Union (EU). The arguments are supported by examples of retrospective monitoring studies conducted under the programme of the German ESB. These studies have evaluated the success of regulatory and industry provisions for substances of concern (i.e. PCB, polybrominated diphenyl ethers, perfluorinated compounds, alkylphenol compounds, organotin compounds, triclosan/methyl-triclosan, musk fragrances). Time trend studies revealed for example that levels of organotin compounds in marine biota from German coastal waters decreased significantly after the EU had decided on a total ban of organotin-based antifoulings in 2003. Similarly, concentrations of commercially relevant congeners of polybrominated diphenyl ethers decreased in herring gull eggs from the North Sea only after an EU-wide ban in 2004. The data presented demonstrate the usefulness of ESB samples for (retrospective) time trend monitoring and underline the benefit of a more intensive cooperation between chemicals management and specimen banking.