Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Krieger is active.

Publication


Featured researches published by Jan Krieger.


Nature Protocols | 2015

Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms

Jan Krieger; Anand Pratap Singh; Nirmalya Bag; Christoph S. Garbe; Timothy E. Saunders; Jörg Langowski; Thorsten Wohland

Single-plane illumination (SPIM) or total internal reflection fluorescence (TIRF) microscopes can be combined with fast and single-molecule-sensitive cameras to allow spatially resolved fluorescence (cross-) correlation spectroscopy (FCS or FCCS, hereafter referred to FCS/FCCS). This creates a powerful quantitative bioimaging tool that can generate spatially resolved mobility and interaction maps with hundreds to thousands of pixels per sample. These massively parallel imaging schemes also cause less photodamage than conventional single-point confocal microscopy–based FCS/FCCS. Here we provide guidelines for imaging FCS/FCCS measurements on commercial and custom-built microscopes (including sample preparation, setup calibration, data acquisition and evaluation), as well as anticipated results for a variety of in vitro and in vivo samples. For a skilled user of an available SPIM or TIRF setup, sample preparation, microscope alignment, data acquisition and data fitting, as described in this protocol, will take ∼1 d, depending on the sample and the mode of imaging.


Optics Express | 2013

The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy

Anand Pratap Singh; Jan Krieger; Jan Buchholz; Edoardo Charbon; Jörg Langowski; Thorsten Wohland

Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in a sample, which requires array detectors for recording the fluorescence signal. Several types of image sensors are suitable for FCS. They differ in properties such as effective area per pixel, quantum efficiency, noise level and read-out speed. Here we compare the performance of several low light array detectors based on three different technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2) passive-pixel electron multiplying charge coupled device (EMCCD) and (3) active-pixel scientific-grade complementary metal oxide semiconductor cameras (sCMOS). We discuss the influence of the detector characteristics on the effective FCS observation volume, and demonstrate that light sheet based SPIM-FCS provides absolute diffusion coefficients. This is verified by parallel measurements with confocal FCS, single particle tracking (SPT), and the determination of concentration gradients in space and time. While EMCCD cameras have a temporal resolution in the millisecond range, sCMOS cameras and SPAD arrays can extend the time resolution of SPIM-FCS down to 10 μs or lower.


Optics Express | 2014

Dual-Color Fluorescence Cross-Correlation Spectroscopy on a Single Plane Illumination Microscope (SPIM-FCCS)

Jan Krieger; Anand Pratap Singh; Christoph S. Garbe; Thorsten Wohland; Jörg Langowski

Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, flow velocities and concentrations in an imaging mode. Here we extend this technique to two-color fluorescence cross-correlation spectroscopy (SPIM-FCCS), which allows to measure molecular interactions in an imaging mode. We present a theoretical framework for SPIM-FCCS fitting models, which is subsequently used to evaluate several test measurements of in-vitro (labeled microspheres, several DNAs and small unilamellar vesicles) and in-vivo samples (dimeric and monomeric dual-color fluorescent proteins, as well as membrane bound proteins). Our method yields the same quantitative results as the well-established confocal FCCS, but in addition provides unmatched statistics and true imaging capabilities.


Optics Express | 2012

FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series

Jan Buchholz; Jan Krieger; Gábor Mocsár; Balázs Kreith; Edoardo Charbon; György Vámosi; U. Kebschull; Jörg Langowski

With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (≥ 100 kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Time-dependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multi-τ correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multi-τ correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10 μs in real-time and therefore correlate real-time image streams from high speed single photon cameras with thousands of pixels.


Molecular and Cellular Biology | 2014

Ligand Binding Shifts Highly Mobile Retinoid X Receptor to the Chromatin-Bound State in a Coactivator-Dependent Manner, as Revealed by Single-Cell Imaging

Peter Brazda; Jan Krieger; Bence Daniel; Dávid Jónás; Tibor Szekeres; Jörg Langowski; Katalin Tóth; Laszlo Nagy; György Vámosi

ABSTRACT Retinoid X receptor (RXR) is a promiscuous nuclear receptor forming heterodimers with several other receptors, which activate different sets of genes. Upon agonist treatment, the occupancy of its genomic binding regions increased, but only a modest change in the number of sites was revealed by chromatin immunoprecipitation followed by sequencing, suggesting a rather static behavior. However, such genome-wide and biochemical approaches do not take into account the dynamic behavior of a transcription factor. Therefore, we characterized the nuclear dynamics of RXR during activation in single cells on the subsecond scale using live-cell imaging. By applying fluorescence recovery after photobleaching and fluorescence correlation spectroscopy (FCS), techniques with different temporal and spatial resolutions, a highly dynamic behavior could be uncovered which is best described by a two-state model (slow and fast) of receptor mobility. In the unliganded state, most RXRs belonged to the fast population, leaving ∼15% for the slow, chromatin-bound fraction. Upon agonist treatment, this ratio increased to ∼43% as a result of an immediate and reversible redistribution. Coactivator binding appears to be indispensable for redistribution and has a major contribution to chromatin association. A nuclear mobility map recorded by light sheet microscopy-FCS shows that the ligand-induced transition from the fast to the slow population occurs throughout the nucleus. Our results support a model in which RXR has a distinct, highly dynamic nuclear behavior and follows hit-and-run kinetics upon activation.


Scientific Reports | 2016

EGFP oligomers as natural fluorescence and hydrodynamic standards

György Vámosi; Norbert Mücke; Gabriele Müller; Jan Krieger; Ute Curth; Jörg Langowski; Katalin Tóth

EGFP oligomers are convenient standards for experiments on fluorescent protein-tagged biomolecules. In this study, we characterized their hydrodynamic and fluorescence properties. Diffusion coefficients D of EGFP1–4 were determined by analytical ultracentrifugation with fluorescence detection and by fluorescence correlation spectroscopy (FCS), yielding 83.4…48.2 μm2/s and 97.3…54.8 μm2/s from monomer to tetramer. A “barrels standing in a row” model agreed best with the sedimentation data. Oligomerization red-shifted EGFP emission spectra without any shift in absorption. Fluorescence anisotropy decreased, indicating homoFRET between the subunits. Fluorescence lifetime decreased only slightly (4%) indicating insignificant quenching by FRET to subunits in non-emitting states. FCS-measured D, particle number and molecular brightness depended on dark states and light-induced processes in distinct subunits, resulting in a dependence on illumination power different for monomers and oligomers. Since subunits may be in “on” (bright) or “off” (dark) states, FCS-determined apparent brightness is not proportional to that of the monomer. From its dependence on the number of subunits, the probability of the “on” state for a subunit was determined to be 96% at pH 8 and 77% at pH 6.38, i.e., protonation increases the dark state. These fluorescence properties of EGFP oligomeric standards can assist interpreting results from oligomerized EGFP fusion proteins of biological interest.


Review of Scientific Instruments | 2012

Note: Multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array

Gábor Mocsár; Balázs Kreith; Jan Buchholz; Jan Krieger; J. Langowski; György Vámosi

We introduce a new multiple-tau hardware correlator design for computing fluorescence correlation functions (CFs) in real time. Use of hardware resources is minimized by scheduling the computation of different segments of the CFs on a single correlator block. Simultaneous calculation of two multiple-tau autocorrelation (ACFs) and two cross-correlation functions (CCFs) is implemented in LabVIEW on a National Instruments field programmable gate array (FPGA) card with a minimal sampling time of 400 ns. Raw data are stored with a time resolution of 50 ns. The design can be easily adapted to other FPGA cards and extended to more inputs.


Physical Chemistry Chemical Physics | 2009

Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by Brownian dynamics

Tomasz Wocjan; Jan Krieger; Oleg Krichevsky; Jörg Langowski

We investigated the dynamics of a single-fluorophore-labeled pUC18 plasmid through a Brownian dynamics algorithm, followed by a simulation of the fluorescence correlation spectroscopy (FCS) process. Recent experimental FCS measurements indicated a sensitivity of the monomer mean square displacements in DNA circles towards superhelicity. Simulations with homogeneous DNA elasticity and local straight equilibrium are not sufficient to reproduce this observed behavior. But inserting permanently bent sequences into the DNA, which favor end loop formation, caused a dependence of the calculated FCS correlation curves on superhelical density. Furthermore, our simulations allow us to take into account the orientation of the fluorophore in polarized excitation, which might explain the observed appearance of a Rouse-like regime at intermediate time scales.


Molecular and Cellular Biology | 2015

Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling

Nikoletta Szalóki; Jan Krieger; István Komáromi; Katalin Tóth; György Vámosi

ABSTRACT The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos–c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development.


Journal of Investigative Dermatology | 2018

Threonine 150 Phosphorylation of Keratin 5 Is Linked to Epidermolysis Bullosa Simplex and Regulates Filament Assembly and Cell Viability

Mugdha Sawant; Nicole Schwarz; Reinhard Windoffer; Thomas M. Magin; Jan Krieger; Norbert Mücke; Boguslaw Obara; Vera Jankowski; Joachim Jankowski; Verena Wally; Thomas Lettner; Rudolf E. Leube

A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII-/-) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII–/–) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.

Collaboration


Dive into the Jan Krieger's collaboration.

Top Co-Authors

Avatar

Jörg Langowski

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jan Buchholz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Edoardo Charbon

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agata Pernus

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Katalin Tóth

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Anand Pratap Singh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Thorsten Wohland

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Norbert Mücke

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge