Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Langowski is active.

Publication


Featured researches published by Jörg Langowski.


Trends in Biochemical Sciences | 1995

Action at a distance: DNA-looping and initiation of transcription

Karsten Rippe; Peter H. von Hippel; Jörg Langowski

Effective initiation of transcription, especially in eukaryotes, requires the specific assembly of large protein complexes at promoters. We ask here how activator proteins that are bound hundreds or thousands of base pairs away from the promoter might facilitate this process if protein-protein interactions occur via looping of the intervening DNA. We show that the local concentration at the promoter of activator proteins bound at vicinal DNA sites can be substantially regulated by intrinsic or protein-induced distortion of the regular DNA conformation.


Journal of Molecular Biology | 1999

Compartmentalization of interphase chromosomes observed in simulation and experiment.

Christian Münkel; Roland Eils; Steffen Dietzel; Daniele Zink; Carsten Mehring; Gero Wedemann; Thomas Cremer; Jörg Langowski

Human interphase chromosomes were simulated as a flexible fiber with excluded volume interaction, which represents the chromatin fiber of each chromosome. For the higher-order structures, we assumed a folding into 120 kb loops and an arrangement of these loops into rosette-like subcompartments. Chromosomes consist of subcompartments connected by small fragments of chromatin. Number and size of subcompartments correspond with chromosome bands in early prophase. We observed essentially separated chromosome arms in both our model calculations and confocal laser scanning microscopy, and measured the same overlap in simulation and experiment. Overlap, number and size of chromosome 15 subcompartments of our model chromosomes agree with subchromosomal foci composed of either early or late replicating chromatin, which were observed at all stages of the cell cycle and possibly provide a functionally relevant unit of chromosome territory compartmentalization. Computed distances of chromosome specific markers both on Mb and 10-100 Mb scale agree with fluorescent in situ hybridization measurements under different preparation conditions.


Biophysical Journal | 2003

DNA Basepair Step Deformability Inferred from Molecular Dynamics Simulations

Filip Lankaš; Jiří Šponer; Jörg Langowski; Thomas E. Cheatham

The sequence-dependent DNA deformability at the basepair step level was investigated using large-scale atomic resolution molecular dynamics simulation of two 18-bp DNA oligomers: d(GCCTATAAACGCCTATAA) and d(CTAGGTGGATGACTCATT). From an analysis of the structural fluctuations, the harmonic potential energy functions for all 10 unique steps with respect to the six step parameters have been evaluated. In the case of roll, three distinct groups of steps have been identified: the flexible pyrimidine-purine (YR) steps, intermediate purine-purine (RR), and stiff purine-pyrimidine (RY). The YR steps appear to be the most flexible in tilt and partially in twist. Increasing stiffness from YR through RR to RY was observed for rise, whereas shift and slide lack simple trends. A proposed measure of the relative importance of couplings identifies the slide-rise, twist-roll, and twist-slide couplings to play a major role. The force constants obtained are of similar magnitudes to those based on a crystallographic ensemble. However, the current data have a less complicated and less pronounced sequence dependence. A correlation analysis reveals concerted motions of neighboring steps and thus exposes limitations in the dinucleotide model. The comparison of DNA deformability from this and other studies with recent quantum-chemical stacking energy calculations suggests poor correlation between the stacking and flexibility.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Nucleosome disassembly intermediates characterized by single-molecule FRET

Alexander Gansen; Alessandro Valeri; Florian Hauger; Suren Felekyan; Stanislav Kalinin; Katalin Tóth; Jörg Langowski; Claus A.M. Seidel

The nucleosome has a central role in the compaction of genomic DNA and the control of DNA accessibility for transcription and replication. To help understanding the mechanism of nucleosome opening and closing in these processes, we studied the disassembly of mononucleosomes by quantitative single-molecule FRET with high spatial resolution, using the SELEX-generated “Widom 601” positioning sequence labeled with donor and acceptor fluorophores. Reversible dissociation was induced by increasing NaCl concentration. At least 3 species with different FRET were identified and assigned to structures: (i) the most stable high-FRET species corresponding to the intact nucleosome, (ii) a less stable mid-FRET species that we attribute to a first intermediate with a partially unwrapped DNA and less histones, and (iii) a low-FRET species characterized by a very broad FRET distribution, representing highly unwrapped structures and free DNA formed at the expense of the other 2 species. Selective FCS analysis indicates that even in the low-FRET state, some histones are still bound to the DNA. The interdye distance of 54.0 Å measured for the high-FRET species corresponds to a compact conformation close to the known crystallographic structure. The coexistence and interconversion of these species is first demonstrated under non-invasive conditions. A geometric model of the DNA unwinding predicts the presence of the observed FRET species. The different structures of these species in the disassembly pathway map the energy landscape indicating major barriers for 10-bp and minor ones for 5-bp DNA unwinding steps.


Mutation Research\/reviews in Genetic Toxicology | 1996

Nuclear architecture and the induction of chromosomal aberrations

Christoph Cremer; Ch. Münkel; M. Granzow; Anna Jauch; Steffen Dietzel; Roland Eils; Xin Yuan Guan; Paul S. Meltzer; Jeffrey M. Trent; Jörg Langowski; Thomas Cremer

Progress in fluorescence in situ hybridization, three dimensional microscopy and image analysis has provided the means to study the three-dimensional structure and distribution of chromosome territories within the cell nucleus. In this contribution, we summarize the present state of knowledge of the territorial organization of interphase chromosomes and their topological relationships with other macromolecular domains in the human cell nucleus, and present data from computer simulations of chromosome territory distributions. On this basis, we discuss models of chromosome territory and nuclear architecture and topological consequences for the formation of chromosome exchanges.


Nucleic Acids Research | 2011

Nucleosome accessibility governed by the dimer/tetramer interface

Vera Böhm; Aaron R. Hieb; Andrew J. Andrews; Alexander Gansen; Andrea Rocker; Katalin Tóth; Karolin Luger; Jörg Langowski

Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate structural state before H2A–H2B dimer release, which is characterized by an increased distance between H2B and the nucleosomal dyad. This suggests that the first step in nucleosome disassembly is the opening of the (H3–H4)2 tetramer/(H2A–H2B) dimer interface, followed by H2A–H2B dimer release from the DNA and, lastly, (H3–H4)2 tetramer removal. We estimate that the open intermediate state is populated at 0.2–3% under physiological conditions. This finding could have significant in vivo implications for factor-mediated histone removal and exchange, as well as for regulating DNA accessibility to the transcription and replication machinery.


Biophysical Journal | 2003

Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching

Malte Wachsmuth; Thomas Weidemann; Gabriele Müller; Urs Hoffmann-Rohrer; Tobias A. Knoch; Waldemar Waldeck; Jörg Langowski

Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.


Biophysical Journal | 1998

A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes.

Konstantin V. Klenin; Holger Merlitz; Jörg Langowski

For the interpretation of solution structural and dynamic data of linear and circular DNA molecules in the kb range, and for the prediction of the effect of local structural changes on the global conformation of such DNAs, we have developed an efficient and easy way to set up a program based on a second-order explicit Brownian dynamics algorithm. The DNA is modeled by a chain of rigid segments interacting through harmonic spring potentials for bending, torsion, and stretching. The electrostatics are handled using precalculated energy tables for the interactions between DNA segments as a function of relative orientation and distance. Hydrodynamic interactions are treated using the Rotne-Prager tensor. While maintaining acceptable precision, the simulation can be accelerated by recalculating this tensor only once in a certain number of steps.


Journal of Molecular Biology | 2008

Spontaneous Access to DNA Target Sites in Folded Chromatin Fibers

Michael G. Poirier; Malte Bussiek; Jörg Langowski; Jonathan Widom

DNA wrapped in nucleosomes is sterically occluded from many protein complexes that must act on it; how such complexes gain access to nucleosomal DNA is not known. In vitro studies on isolated nucleosomes show that they undergo spontaneous partial unwrapping conformational transitions, which make the wrapped nucleosomal DNA transiently accessible. Thus, site exposure might provide a general mechanism allowing access of protein complexes to nucleosomal DNA. However, existing quantitative analyses of site exposure focused on single nucleosomes, while the presence of neighbor nucleosomes and concomitant chromatin folding might significantly influence site exposure. In this work, we carried out quantitative studies on the accessibility of nucleosomal DNA in homogeneous nucleosome arrays. Two striking findings emerged. Organization into chromatin fibers changes the accessibility of nucleosomal DNA only modestly, from approximately 3-fold decreases to approximately 8-fold increases in accessibility. This means that nucleosome arrays are intrinsically dynamic and accessible even when they are visibly condensed. In contrast, chromatin folding decreases the accessibility of linker DNA by as much as approximately 50-fold. Thus, nucleosome positioning dramatically influences the accessibility of target sites located inside nucleosomes, while chromatin folding dramatically regulates access to target sites in linker DNA.


PLOS ONE | 2009

Mapping eGFP Oligomer Mobility in Living Cell Nuclei

Nicolas Dross; Corentin Spriet; Monika Zwerger; Gabriele Müller; Waldemar Waldeck; Jörg Langowski

Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.

Collaboration


Dive into the Jörg Langowski's collaboration.

Top Co-Authors

Avatar

Katalin Tóth

Interdisciplinary Center for Scientific Computing

View shared research outputs
Top Co-Authors

Avatar

Jan Krieger

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Norbert Mücke

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Konstantin V. Klenin

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Alexander Gansen

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Waldemar Waldeck

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriele Müller

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jan Buchholz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Harald Herrmann

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge