Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Kyselý is active.

Publication


Featured researches published by Jan Kyselý.


Annals of the New York Academy of Sciences | 2008

Classifications of Atmospheric Circulation Patterns

Radan Huth; Christoph Beck; Andreas Philipp; Matthias Demuzere; Zbigniew Ustrnul; Monika Cahynova; Jan Kyselý; Ole Einar Tveito

We review recent advances in classifications of circulation patterns as a specific research area within synoptic climatology. The review starts with a general description of goals of classification and the historical development in the field. We put circulation classifications into a broader context within climatology and systematize the varied methodologies and approaches. We characterize three basic groups of classifications: subjective (also called manual), mixed (hybrid), and objective (computer‐assisted, automated). The roles of cluster analysis and principal component analysis in the classification process are clarified. Several recent methodological developments in circulation classifications are identified and briefly described: the introduction of nonlinear methods, objectivization of subjective catalogs, efforts to optimize classifications, the need for intercomparisons of classifications, and the progress toward an optimum, if possible unified, classification method. Among the recent tendencies in the applications of circulation classifications, we mention a more extensive use in climate studies, both of past, present, and future climates, innovative applications in the ensemble forecasting, increasing variety of synoptic–climatological investigations, and steps above from the troposphere. After introducing the international activity within the field of circulation classifications, the COST733 Action, we briefly describe outputs of the inventory of classifications in Europe, which was carried out within the Action. Approaches to the evaluation of classifications and their mutual comparisons are also reviewed. A considerable part of the review is devoted to three examples of applications of circulation classifications: in historical climatology, in analyses of recent climate variations, and in analyses of outputs from global climate models.


Journal of Applied Meteorology and Climatology | 2008

A Cautionary Note on the Use of Nonparametric Bootstrap for Estimating Uncertainties in Extreme-Value Models

Jan Kyselý

Abstract The parametric and nonparametric approaches to the bootstrap are compared as to their performance in estimating uncertainties in extreme-value models. Simulation experiments make use of several combinations of true and fitted probability distributions utilized in climatological and hydrological applications. The results demonstrate that for small to moderate sample sizes the nonparametric bootstrap should be interpreted with caution because it leads to confidence intervals that are too narrow and underestimate the real uncertainties involved in the frequency models. Although the parametric bootstrap yields confidence intervals that are slightly too liberal as well, it improves the uncertainty estimates in most examined cases, even under conditions in which an incorrect parametric model is adopted for the data. Differences among three examined types of bootstrap confidence intervals (percentile, bootstrap t, and bias corrected and accelerated) are usually smaller in comparison with those between t...


International Journal of Environmental Research and Public Health | 2014

Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic.

Aleš Urban; Jan Kyselý

We compare the recently developed Universal Thermal Climate Index (UTCI) with other thermal indices in analysing heat- and cold-related effects on cardiovascular (CVD) mortality in two different (urban and rural) regions in the Czech Republic during the 16-year period from 1994–2009. Excess mortality is represented by the number of deaths above expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Air temperature, UTCI, Apparent Temperature (AT) and Physiologically Equivalent Temperature (PET) are applied to identify days with heat and cold stress. We found similar heat effects on CVD mortality for air temperature and the examined thermal indices. Responses of CVD mortality to cold effects as characterised by different indices were much more varied. Particularly important is the finding that air temperature provides a weak cold effect in comparison with the thermal indices in both regions, so its application—still widespread in epidemiological studies—may underestimate the magnitude of cold-related mortality. These findings are important when possible climate change effects on heat- and cold-related mortality are estimated. AT and PET appear to be more universal predictors of heat- and cold- related mortality than UTCI when both urban and rural environments are of concern. UTCI tends to select windy rather than freezing days in winter, though these show little effect on mortality in the urban population. By contrast, significant cold-related mortality in the rural region if UTCI is used shows potential for UTCI to become a useful tool in cold exposure assessments.


International Journal of Biometeorology | 2014

Heat- and cold-stress effects on cardiovascular mortality and morbidity among urban and rural populations in the Czech Republic

Aleš Urban; Hana Davídkovová; Jan Kyselý

Several studies have examined the relationship of high and low air temperatures to cardiovascular mortality in the Czech Republic. Much less is understood about heat-/cold-related cardiovascular morbidity and possible regional differences. This paper compares the effects of warm and cold days on excess mortality and morbidity for cardiovascular diseases (CVDs) in the city of Prague and a rural region of southern Bohemia during 1994–2009. Population size and age structure are similar in the two regions. The results are evaluated for selected population groups (men and women). Excess mortality (number of deaths) and morbidity (number of hospital admissions) were determined as differences between observed and expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Generally higher relative excess CVD mortality on warm days than on cold days was identified in both regions. In contrast to mortality, weak excess CVD morbidity was observed for both warm and cold days. Different responses of individual CVDs to heat versus cold stress may be caused by the different nature of each CVD and different physiological processes induced by heat or cold stress. The slight differences between Prague and southern Bohemia in response to heat versus cold stress suggest the possible influence of environmental and socioeconomic factors such as the effects of urban heat island and exposure to air pollution, lifestyle differences, and divergence in population structure, which may result in differing vulnerability of urban versus rural population to temperature extremes.


Climatic Change | 2012

Declining impacts of hot spells on mortality in the Czech Republic, 1986–2009: adaptation to climate change?

Jan Kyselý; Eva Plavcová

The study examines temporal changes in mortality associated with spells of large positive temperature anomalies (hot spells) in extended summer season in the population of the Czech Republic (Central Europe) during 1986–2009. Declining trends in the mortality impacts are found in spite of rising temperature trends. The finding remains unchanged if possible confounding effects of within-season acclimatization to heat and the mortality displacement effect are taken into account. Recent positive socioeconomic development, following the collapse of communism in Central and Eastern Europe in 1989, and better public awareness of heat-related risks are likely the primary causes of the declining vulnerability. The results suggest that climate change may have relatively little influence on heat-related deaths, since changes in other factors that affect vulnerability of the population are dominant instead of temperature trends. It is essential to better understand the observed nonstationarity of the temperature-mortality relationship and the role of adaptation and its limits, both physiological and technological, and to address associated uncertainties in studies dealing with climate change projections of temperature-related mortality.


The Lancet Planetary Health | 2017

Projections of temperature-related excess mortality under climate change scenarios

Antonio Gasparrini; Yuming Guo; Francesco Sera; Ana M. Vicedo-Cabrera; Veronika Huber; Shilu Tong; Micheline de Sousa Zanotti Stagliorio Coelho; Paulo Hilário Nascimento Saldiva; Eric Lavigne; Patricia Matus Correa; Nicolas Valdes Ortega; Haidong Kan; Samuel Osorio; Jan Kyselý; Aleš Urban; Jouni J. K. Jaakkola; Niilo R. I. Ryti; Mathilde Pascal; Patrick Goodman; Ariana Zeka; Paola Michelozzi; Matteo Scortichini; Masahiro Hashizume; Yasushi Honda; Magali Hurtado-Diaz; Julio Cruz; Xerxes Seposo; Ho Kim; Aurelio Tobías; Carmen Iñiguez

Summary Background Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. Funding UK Medical Research Council.


BMC Public Health | 2014

Impacts of hot and cold spells differ for acute and chronic ischaemic heart diseases.

Hana Davídkovová; Eva Plavcová; Jan Kynčl; Jan Kyselý

BackgroundMany studies have reported associations between temperature extremes and cardiovascular mortality but little has been understood about differences in the effects on acute and chronic diseases. The present study examines hot and cold spell effects on ischaemic heart disease (IHD) mortality in the Czech Republic during 1994–2009, with emphasis upon differences in the effects on acute myocardial infarction (AMI) and chronic IHD.MethodsWe use analogous definitions for hot and cold spells based on quantiles of daily average temperature anomalies, thus allowing for comparison of results for summer hot spells and winter cold spells. Daily mortality data were standardised to account for the long-term trend and the seasonal and weekly cycles. Periods when the data were affected by epidemics of influenza and other acute respiratory infections were removed from the analysis.ResultsBoth hot and cold spells were associated with excess IHD mortality. For hot spells, chronic IHD was responsible for most IHD excess deaths in both male and female populations, and the impacts were much more pronounced in the 65+ years age group. The excess mortality from AMI was much lower compared to chronic IHD mortality during hot spells. For cold spells, by contrast, the relative excess IHD mortality was most pronounced in the younger age group (0–64 years), and we found different pattern for chronic IHD and AMI, with larger effects on AMI.ConclusionsThe findings show that while excess deaths due to IHD during hot spells are mainly of persons with chronic diseases whose health had already been compromised, cardiovascular changes induced by cold stress may result in deaths from acute coronary events rather than chronic IHD, and this effect is important also in the younger population. This suggests that the most vulnerable population groups as well as the most affected cardiovascular diseases differ between hot and cold spells, which needs to be taken into account when designing and implementing preventive actions.


Studia Geophysica Et Geodaetica | 2000

Heat Waves in the South Moravian Region During the Period 1961-1995

Jan Kyselý; Jaroslava Kalvová; Vít Květoň

Heat waves (periods of extremely hot summer weather) in the region of south Moravia are in the focus of this study. The introduced definition consists of three requirements imposed on the period that is considered a heat wave: at least three days with TMAX≥30.0°C must be observed; the mean TMAXover the whole period is at least 30.0°C; and TMAXmust not drop below 25.0°C. To compare the severity of the individual heat waves, various characteristics (duration, number of tropical days, peak temperature, cumulative temperature excess, precipitation amount) are examined. The heat wave index HWI is defined to express the severity of heat waves in the most comprehensive way.An extraordinary heat wave occurred in July and August 1994; it lasted more than a month at several stations, while the duration of a typical heat wave is only 4 - 7 days. The extremely long unbroken period of tropical days, and even of days with TMAX≥32.0°C, represents the most distinct feature of the severe 1994 heat wave. With regard to heat wave characteristics, the summer temperature exceptionality of the early 1990s is indubitable.


Climate Dynamics | 2012

Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

Eva Plavcová; Jan Kyselý

The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for daily maxima than minima. RCMs qualitatively reproduce these relationships. Effects of the driving model biases were found on RCMs’ performance in reproducing not only atmospheric circulation but also the links to surface temperature. However, the RCM formulation appears to be more important than the driving data in representing the latter. Differences of the circulation-to-temperature links among the RCA simulations are smaller and the links tend to be more realistic compared to the driving GCMs.


Studia Geophysica Et Geodaetica | 2003

Simulation of Surface Air Temperature by GCMs, Statistical Downscaling and Weather Generator: Higher-Order Statistical Moments

Radan Huth; Jan Kyselý; Martin Dubrovský

The third and fourth statistical moments, that is, skewness and kurtosis, are compared for daily maximum temperature in summer and daily minimum temperature in winter between observations, outputs of two global climate models, four versions of statistical downscaling, and weather generator. The comparison is performed at six stations in central Europe. None of the simulation models can be considered as superior to the others. Causes of a good correspondence with and differences from observations are identified e.g. in the treatment of physics in the models, imperfections in physical parameterizations, or a linear transfer of properties from predictors onto predictands in statistical downscaling.

Collaboration


Dive into the Jan Kyselý's collaboration.

Top Co-Authors

Avatar

Eva Plavcová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Romana Beranová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Radan Huth

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martin Hanel

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Ondřej Lhotka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Ladislav Gaál

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Aleš Urban

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Petr Máca

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Zuzana Rulfová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Hana Davídkovová

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge