Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan M. Ruijter is active.

Publication


Featured researches published by Jan M. Ruijter.


Neuroscience Letters | 2003

Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

Christian Ramakers; Jan M. Ruijter; Ronald H. Lekanne Deprez; Antoon F. M. Moorman

Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR efficiency for the amplicon of interest is constant or even, in the case of the comparative C(t) method, equal to 2. The latter method already leads to a 4-fold error when the PCR efficiencies vary over just a 0.04 range. PCR efficiencies of amplicons are usually calculated from standard curves based on either known RNA inputs or on dilution series of a reference cDNA sample. In this paper we show that the first approach can lead to PCR efficiencies that vary over a 0.2 range, whereas the second approach may be off by 0.26. Therefore, we propose linear regression on the Log(fluorescence) per cycle number data as an assumption-free method to calculate starting concentrations of mRNAs and PCR efficiencies for each sample. A computer program to perform this calculation is available on request (e-mail: [email protected]; subject: LinRegPCR).


Analytical Biochemistry | 2002

Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions

Ronald H. Lekanne Deprez; Arnoud C. Fijnvandraat; Jan M. Ruijter; Antoon F. M. Moorman

The recent development of real-time PCR has offered the opportunity of sensitive and accurate quantification of mRNA levels that is crucial in biomedical research. Although reverse transcription (RT)-PCR is at present the most sensitive method available, many low abundant mRNAs are, although detectable, often not quantifiable. Here we report an improved two-step real-time RT-PCR procedure using SYBR green I and the LightCycler that better permits accurate quantification of mRNAs. Omission of dithiothreitol from the cDNA synthesis reaction was found to be crucial. This resulted in a lower cycle number at which the cDNA level is determined (C(T) value), steeper amplification curves, and removal of background fluorescence in the subsequent PCR. In addition, the choice of the cDNA priming oligo can improve detection sensitivity even further. In contrast to hexamer primer usage, both gene-specific and oligo-dT(VN) priming were very efficient and accurate, with gene-specific priming being the most sensitive. Finally, accurate quantification of mRNAs by real-time PCR using SYBR green I requires verification of the specificity of PCR by both melting curve and gel analysis.


Circulation Research | 2009

A Caudal Proliferating Growth Center Contributes to Both Poles of the Forming Heart Tube

Gert van den Berg; Radwan Abu-Issa; Bouke A. de Boer; Mary R. Hutson; Piet A.J. de Boer; Alexandre T. Soufan; Jan M. Ruijter; Margaret L. Kirby; Maurice J.B. van den Hoff; Antoon F. M. Moorman

Recent studies have shown that the primary heart tube continues to grow by addition of cells from the coelomic wall. This growth occurs concomitantly with embryonic folding and formation of the coelomic cavity, making early heart formation morphologically complex. A scarcity of data on localized growth parameters further hampers the understanding of cardiac growth. Therefore, we investigated local proliferation during early heart formation. Firstly, we determined the cell cycle length of primary myocardium of the early heart tube to be 5.5 days, showing that this myocardium is nonproliferating and implying that initial heart formation occurs solely by addition of cells. In line with this, we show that the heart tube rapidly lengthens at its inflow by differentiation of recently divided precursor cells. To track the origin of these cells, we made quantitative 3D reconstructions of proliferation in the forming heart tube and the mesoderm of its flanking coelomic walls. These reconstructions show a single, albeit bilateral, center of rapid proliferation in the caudomedial pericardial back wall. This center expresses Islet1. Cell tracing showed that cells from this caudal growth center, besides feeding into the venous pole of the heart, also move cranially via the dorsal pericardial mesoderm and differentiate into myocardium at the arterial pole. Inhibition of caudal proliferation impairs the formation of both the atria and the right ventricle. These data show how a proliferating growth center in the caudal coelomic wall elongates the heart tube at both its venous and arterial pole, providing a morphological mechanism for early heart formation.


Circulation Research | 2006

Regionalized Sequence of Myocardial Cell Growth and Proliferation Characterizes Early Chamber Formation

Alexandre T. Soufan; Gert van den Berg; Jan M. Ruijter; Piet A.J. de Boer; Maurice J.B. van den Hoff; Antoon F. M. Moorman

Increase in cell size and proliferation of myocytes are key processes in cardiac morphogenesis, yet their regionalization during development of the heart has been described only anecdotally. We have made quantitative reconstructions of embryonic chicken hearts ranging in stage from the fusion of the heart-forming fields to early formation of the chambers. These reconstructions reveal that the early heart tube is recruited from a pool of rapidly proliferating cardiac precursor cells. The proliferation of these small precursor cells ceases as they differentiate into overt cardiomyocytes, producing a slowly proliferating straight heart tube composed of cells increasing in size. The largest cells were found at the ventral side of the heart tube, which corresponds to the site of the forming ventricle, as well as the site where proliferation is reinitiated. The significance of these observations is 2-fold. First, they support a model of early cardiac morphogenesis in 2 stages. Second, they demonstrate that regional increase in size of myocytes contributes significantly to chamber formation.


Cardiovascular Research | 2003

Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube

Arnoud C. Fijnvandraat; Antoni C.G. van Ginneken; Piet A.J. de Boer; Jan M. Ruijter; Vincent M. Christoffels; Antoon F. M. Moorman; Ronald H. Lekanne Deprez

OBJECTIVE After formation of the linear heart tube a chamber-specific program of gene expression becomes active that underlies the formation of the chamber myocardium. To assess whether this program is recapitulated in in vitro differentiated embryonic stem cells, we performed qualitative and quantitative analyses of cardiogenesis in vivo and in vitro. METHODS Gene expression profiles were made by in situ hybridisation and real-time PCR and electrophysiological profiles by patch clamp analyses of cardiomyocytes derived from time series of differentiating HM1 mouse embryonic stem cells and from embryonic and adult mouse hearts. RESULTS In embryoid bodies the in situ patterns of expression of alpha-myosin heavy chain, myosin light chain 2a and sarcoendoplasmic reticulum calcium ATPase 2a were similar to that of the heart muscle-specific marker gene cardiac troponin I. Myosin light chain 2v was expressed in part of the cardiac troponin I-expressing area, indicating heterogeneity within the cardiac cell population. Atrial natriuretic factor expression, indicative of the chamber-type program, could only very occasionally be detected by in situ hybridisation. Quantitative reverse transcriptase PCR showed that all cardiac genes, most notably atrial natriuretic factor, were expressed at relatively low levels, similar to those in embryonic hearts at embryonic day 8.75-9. Analysis of the electrophysiological characteristics of embryonic stem cell-derived cardiomyocytes showed an increase of the upstroke velocity and a shorter duration of the action potential during prolonged differentiation in vitro. When embryonic mouse heart compartments of embryonic day 12.5 were used as a reference, the electrophysiological characteristics of a substantial part of the embryonic stem cell-derived cardiomyocytes were most reminiscent to those observed in the embryonic outflow tract. CONCLUSION Together, these data suggest that most cardiomyocytes acquired by differentiation of embryonic stem cells maintain a phenotype reminiscent of that of the cardiomyocytes of the primary heart tube, and hardly any myocytes develop a chamber myocardial phenotype.


Methods | 2010

Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value

Jari M. Tuomi; Frans Voorbraak; Douglas L. Jones; Jan M. Ruijter

For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence. Hydrolysis reporters (TaqMan probes and QZyme primers) become fluorescent during DNA elongation and the released fluorophore remains fluorescent during further cycles; this results in a cumulative increase in observed fluorescence. Although the quantification threshold is reached at a lower number of cycles when fluorescence accumulates, in qPCR analysis no distinction is made between the two types of data sets. Mathematical modeling shows that ignoring the cumulative nature of the data leaves the estimated PCR efficiency practically unaffected but will lead to at least one cycle underestimation of the quantification cycle (C(q) value), corresponding to a 2-fold overestimation of target quantity. The effect on the target-reference ratio depends on the PCR efficiency of the target and reference amplicons. The leftward shift of the C(q) value is dependent on the PCR efficiency and with sufficiently large C(q) values, this shift is constant. This allows the C(q) to be corrected and unbiased target quantities to be obtained.


Journal of Cardiovascular Electrophysiology | 2006

Diagnostic Value of Flecainide Testing in Unmasking SCN5A-Related Brugada Syndrome

Paola G. Meregalli; Jan M. Ruijter; Nynke Hofman; Connie R. Bezzina; Arthur A.M. Wilde; Hanno L. Tan

Introduction: Provocation tests with sodium channel blockers are often required to unmask ECG abnormalities in Brugada syndrome (BrS). However, their diagnostic value is only partially established, while life‐threatening ventricular arrhythmias during these tests were reported. We aimed to establish sensitivity, specificity, and safety of flecainide testing, and to predict a positive test outcome from the baseline ECG.


Circulation Research | 2009

Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein– and Fibroblast Growth Factor–Signaling Pathways

Bram van Wijk; Gert van den Berg; Radwan Abu-Issa; Phil Barnett; Saskia van der Velden; Martina Schmidt; Jan M. Ruijter; Margaret L. Kirby; Antoon F. M. Moorman; Maurice J.B. van den Hoff

Rationale: The epicardium contributes to the majority of nonmyocardial cells in the adult heart. Recent studies have reported that the epicardium is derived from Nkx2.5-positive progenitors and can differentiate into cardiomyocytes. Not much is known about the relation between the myocardial and epicardial lineage during development, whereas insights into these embryonic mechanisms could facilitate the design of future regenerative strategies. Objective: Acquiring insight into the signaling pathways involved in the lineage separation leading to the differentiation of myocardial and (pro)epicardial cells at the inflow of the developing heart. Methods and Results: We made 3D reconstructions of Tbx18 gene expression patterns to give insight into the developing epicardium in relation to the developing myocardium. Next, using DiI tracing, we show that the (pro)epicardium separates from the same precursor pool as the inflow myocardium. In vitro, we show that this lineage separation is regulated by a crosstalk between bone morphogenetic protein (BMP) signaling and fibroblast growth factor (FGF) signaling. BMP signaling via Smad drives differentiation toward the myocardial lineage, which is inhibited by FGF signaling via mitogen-activated protein kinase kinase (Mek)1/2. Embryos exposed to recombinant FGF2 in vivo show enhanced epicardium formation, whereas a misbalance between FGF and BMP by Mek1/2 inhibition and BMP stimulation causes a developmental arrest of the epicardium and enhances myocardium formation at the inflow of the heart. Conclusion: Our data show that FGF signaling via Mek1/2 is dominant over BMP signaling via Smad and is required to separate the epicardial lineage from precardiac mesoderm. Consequently, myocardial differentiation requires BMP signaling via Smad and inhibition of FGF signaling at the level of Mek1/2. These findings are of clinical interest for the development of regeneration-based therapies for heart disease.


Circulation Research | 2004

Reconstruction of the Patterns of Gene Expression in the Developing Mouse Heart Reveals an Architectural Arrangement That Facilitates the Understanding of Atrial Malformations and Arrhythmias

Alexandre T. Soufan; Maurice J.B. van den Hoff; Jan M. Ruijter; Piet A.J. de Boer; Jaco Hagoort; Sandra Webb; Robert H. Anderson; Antoon F. M. Moorman

Firm knowledge about the formation of the atrial components and of the variations seen in congenital cardiac malformations and abnormal atrial rhythms is fundamental to our understanding of the normal structure of the definitive atrial chambers. The atrial region is relatively inaccessible and has continued to be the source of disagreement. Seeking to resolve these controversies, we made three-dimensional reconstructions of the myocardial components of the developing atrium, identifying domains on the basis of differential expression of myocardial markers, connexin40, and natriuretic precursor peptide A. These reconstructions, made from serial sections of mouse embryos, show that from the outset of atrial development, the systemic and pulmonary veins are directly connected to the atrium. Relative to the systemic junctions, however, the pulmonary venous junction appears later. Our experience shows that three-dimensional reconstructions have three advantages. First, they provide clear access to the combined morphological and molecular data, allowing clarification and verification of morphogenetic concepts for nonmorphological experts and setting the scene for further discussion. Second, they demonstrate that, from the outset, the myocardium surrounding the pulmonary veins is distinct from that clothing the systemic venoatrial junctions. Third, they reveal an anatomical and molecular continuity between the entrance of the systemic venous tributaries, the internodal atrial myocardium, and the atrioventricular region. All these regions are derived from primary myocardium, providing a molecular basis for the observed nonrandom distribution of focal right atrial tachycardias.


Cardiovascular Research | 2008

Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43

Kees-Jan Boogerd; L.Y. Elaine Wong; Vincent M. Christoffels; Meinke Klarenbeek; Jan M. Ruijter; Antoon F. M. Moorman; Phil Barnett

AIMS T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. METHODS AND RESULTS Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. CONCLUSION Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

Collaboration


Dive into the Jan M. Ruijter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaco Hagoort

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanno L. Tan

University of Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge