Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piet A.J. de Boer is active.

Publication


Featured researches published by Piet A.J. de Boer.


Journal of Histochemistry and Cytochemistry | 2001

Sensitive Nonradioactive Detection of mRNA in Tissue Sections: Novel Application of the Whole-mount In Situ Hybridization Protocol

Antoon F. M. Moorman; Arjan C. Houweling; Piet A.J. de Boer; Vincent M. Christoffels

The relative insensitivity of nonradioactive mRNA detection in tissue sections compared to the sensitive nonradioactive detection of single-copy DNA sequences in chromosome spreads, or of mRNA sequences in whole-mount samples, has remained a puzzling issue. Because of the biological significance of sensitive in situ mRNA detection in conjunction with high spatial resolution, we developed a nonradioactive in situ hybridization (ISH) protocol for detection of mRNA sequences in sections. The procedure is essentially based on the whole-mount ISH procedure and is at least equally sensitive. Increase of the hybridization temperature to 70C while maintaining stringency of hybridization by adaptation of the salt concentration significantly improved the sensitivity and made the procedure more sensitive than the conventional radioactive procedure. Thicker sections, which were no improvement using conventional radioactive ISH protocols, further enhanced signal. Higher hybridization temperatures apparently permit better tissue penetration of the probe. Application of this highly reliable protocol permitted the identification and localization of the cells in the developing heart that express low-abundance mRNAs of different members of the Iroquois homeobox gene family that are supposedly involved in cardiac patterning. The radioactive ISH procedure scarcely permitted detection of these sequences, underscoring the value of this novel method.


Circulation Research | 2009

A Caudal Proliferating Growth Center Contributes to Both Poles of the Forming Heart Tube

Gert van den Berg; Radwan Abu-Issa; Bouke A. de Boer; Mary R. Hutson; Piet A.J. de Boer; Alexandre T. Soufan; Jan M. Ruijter; Margaret L. Kirby; Maurice J.B. van den Hoff; Antoon F. M. Moorman

Recent studies have shown that the primary heart tube continues to grow by addition of cells from the coelomic wall. This growth occurs concomitantly with embryonic folding and formation of the coelomic cavity, making early heart formation morphologically complex. A scarcity of data on localized growth parameters further hampers the understanding of cardiac growth. Therefore, we investigated local proliferation during early heart formation. Firstly, we determined the cell cycle length of primary myocardium of the early heart tube to be 5.5 days, showing that this myocardium is nonproliferating and implying that initial heart formation occurs solely by addition of cells. In line with this, we show that the heart tube rapidly lengthens at its inflow by differentiation of recently divided precursor cells. To track the origin of these cells, we made quantitative 3D reconstructions of proliferation in the forming heart tube and the mesoderm of its flanking coelomic walls. These reconstructions show a single, albeit bilateral, center of rapid proliferation in the caudomedial pericardial back wall. This center expresses Islet1. Cell tracing showed that cells from this caudal growth center, besides feeding into the venous pole of the heart, also move cranially via the dorsal pericardial mesoderm and differentiate into myocardium at the arterial pole. Inhibition of caudal proliferation impairs the formation of both the atria and the right ventricle. These data show how a proliferating growth center in the caudal coelomic wall elongates the heart tube at both its venous and arterial pole, providing a morphological mechanism for early heart formation.


Circulation Research | 2006

Regionalized Sequence of Myocardial Cell Growth and Proliferation Characterizes Early Chamber Formation

Alexandre T. Soufan; Gert van den Berg; Jan M. Ruijter; Piet A.J. de Boer; Maurice J.B. van den Hoff; Antoon F. M. Moorman

Increase in cell size and proliferation of myocytes are key processes in cardiac morphogenesis, yet their regionalization during development of the heart has been described only anecdotally. We have made quantitative reconstructions of embryonic chicken hearts ranging in stage from the fusion of the heart-forming fields to early formation of the chambers. These reconstructions reveal that the early heart tube is recruited from a pool of rapidly proliferating cardiac precursor cells. The proliferation of these small precursor cells ceases as they differentiate into overt cardiomyocytes, producing a slowly proliferating straight heart tube composed of cells increasing in size. The largest cells were found at the ventral side of the heart tube, which corresponds to the site of the forming ventricle, as well as the site where proliferation is reinitiated. The significance of these observations is 2-fold. First, they support a model of early cardiac morphogenesis in 2 stages. Second, they demonstrate that regional increase in size of myocytes contributes significantly to chamber formation.


Cardiovascular Research | 2003

Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube

Arnoud C. Fijnvandraat; Antoni C.G. van Ginneken; Piet A.J. de Boer; Jan M. Ruijter; Vincent M. Christoffels; Antoon F. M. Moorman; Ronald H. Lekanne Deprez

OBJECTIVE After formation of the linear heart tube a chamber-specific program of gene expression becomes active that underlies the formation of the chamber myocardium. To assess whether this program is recapitulated in in vitro differentiated embryonic stem cells, we performed qualitative and quantitative analyses of cardiogenesis in vivo and in vitro. METHODS Gene expression profiles were made by in situ hybridisation and real-time PCR and electrophysiological profiles by patch clamp analyses of cardiomyocytes derived from time series of differentiating HM1 mouse embryonic stem cells and from embryonic and adult mouse hearts. RESULTS In embryoid bodies the in situ patterns of expression of alpha-myosin heavy chain, myosin light chain 2a and sarcoendoplasmic reticulum calcium ATPase 2a were similar to that of the heart muscle-specific marker gene cardiac troponin I. Myosin light chain 2v was expressed in part of the cardiac troponin I-expressing area, indicating heterogeneity within the cardiac cell population. Atrial natriuretic factor expression, indicative of the chamber-type program, could only very occasionally be detected by in situ hybridisation. Quantitative reverse transcriptase PCR showed that all cardiac genes, most notably atrial natriuretic factor, were expressed at relatively low levels, similar to those in embryonic hearts at embryonic day 8.75-9. Analysis of the electrophysiological characteristics of embryonic stem cell-derived cardiomyocytes showed an increase of the upstroke velocity and a shorter duration of the action potential during prolonged differentiation in vitro. When embryonic mouse heart compartments of embryonic day 12.5 were used as a reference, the electrophysiological characteristics of a substantial part of the embryonic stem cell-derived cardiomyocytes were most reminiscent to those observed in the embryonic outflow tract. CONCLUSION Together, these data suggest that most cardiomyocytes acquired by differentiation of embryonic stem cells maintain a phenotype reminiscent of that of the cardiomyocytes of the primary heart tube, and hardly any myocytes develop a chamber myocardial phenotype.


Journal of Histochemistry and Cytochemistry | 2005

Marked Differences in Tissue-specific Expression of Chitinases in Mouse and Man

Rolf G. Boot; Anton P. Bussink; Marri Verhoek; Piet A.J. de Boer; Antoon F. M. Moorman; Johannes M. F. G. Aerts

Two distinct chitinases have been identified in mammals: a phagocyte-specific enzyme named chitotriosidase and an acidic mammalian chitinase (AMCase) expressed in the lungs and gastrointestinal tract. Increased expression of both chitinases has been observed in different pathological conditions: chitotriosidase in lysosomal lipid storage disorders like Gaucher disease and AMCase in asthmatic lung disease. Recently, it was reported that AMCase activity is involved in the pathogenesis of asthma in an induced mouse model. Inhibition of chitinase activity was found to alleviate the inflammation-driven pathology. We studied the tissue-specific expression of both chitinases in mice and compared it to the situation in man. In both species AMCase is expressed in alveolar macrophages and in the gastrointestinal tract. In mice, chitotriosidase is expressed only in the gastrointestinal tract, the tongue, fore-stomach, and Paneth cells in the small intestine, whereas in man the enzyme is expressed exclusively by professional phagocytes. This species difference seems to be mediated by distinct promoter usage. In conclusion, the pattern of expression of chitinases in the lung differs between mouse and man. The implications for the development of anti-asthma drugs with chitinases as targets are discussed.


Circulation Research | 1998

Sox4-Deficiency Syndrome in Mice Is an Animal Model for Common Trunk

Jing Ya; Marco W. Schilham; Piet A.J. de Boer; Antoon F. M. Moorman; H. Clevers; Wouter H. Lamers

Embryonic mice lacking functional Sox4 transcription factor die from cardiac failure at embryonic day (ED) 14. Heart morphogenesis in these embryos was analyzed in hematoxylin-azophlochsin or immunohistochemically stained, 3-dimensionally reconstructed serial sections between ED12 and ED14. Although Sox4 is expressed in the endocardially derived tissue of both the outflow tract and atrioventricular canal, Sox4-deficient hearts only suffer from defective transformation of the endocardial ridges into semilunar valves and from lack of fusion of these ridges, usually resulting in common trunk, although the least affected hearts should be classified as having a large infundibular septal defect. The more serious cases are, in addition, characterized by an abnormal number and position of the semilunar valve-leaflet anlagen, a configuration of the ridges typical for transposition of the great arteries (with linear rather than spiral course of both ridges and posterior position of the pulmonary trunk at the level of the valve), and variable size of the aorta relative to the pulmonary trunk. The coronary arteries always originated from the aorta, irrespective of its position relative to the pulmonary trunk. The restriction of the malformations to the arterial pole implies that the interaction between the endocardially derived tissue of the outflow tract and the neural crest-derived myofibroblasts determines proper development of the arterial pole.


Circulation Research | 2004

Reconstruction of the Patterns of Gene Expression in the Developing Mouse Heart Reveals an Architectural Arrangement That Facilitates the Understanding of Atrial Malformations and Arrhythmias

Alexandre T. Soufan; Maurice J.B. van den Hoff; Jan M. Ruijter; Piet A.J. de Boer; Jaco Hagoort; Sandra Webb; Robert H. Anderson; Antoon F. M. Moorman

Firm knowledge about the formation of the atrial components and of the variations seen in congenital cardiac malformations and abnormal atrial rhythms is fundamental to our understanding of the normal structure of the definitive atrial chambers. The atrial region is relatively inaccessible and has continued to be the source of disagreement. Seeking to resolve these controversies, we made three-dimensional reconstructions of the myocardial components of the developing atrium, identifying domains on the basis of differential expression of myocardial markers, connexin40, and natriuretic precursor peptide A. These reconstructions, made from serial sections of mouse embryos, show that from the outset of atrial development, the systemic and pulmonary veins are directly connected to the atrium. Relative to the systemic junctions, however, the pulmonary venous junction appears later. Our experience shows that three-dimensional reconstructions have three advantages. First, they provide clear access to the combined morphological and molecular data, allowing clarification and verification of morphogenetic concepts for nonmorphological experts and setting the scene for further discussion. Second, they demonstrate that, from the outset, the myocardium surrounding the pulmonary veins is distinct from that clothing the systemic venoatrial junctions. Third, they reveal an anatomical and molecular continuity between the entrance of the systemic venous tributaries, the internodal atrial myocardium, and the atrioventricular region. All these regions are derived from primary myocardium, providing a molecular basis for the observed nonrandom distribution of focal right atrial tachycardias.


Developmental Biology | 2012

Growth of the developing mouse heart: an interactive qualitative and quantitative 3D atlas.

Bouke A. de Boer; Gert van den Berg; Piet A.J. de Boer; Antoon F. M. Moorman; Jan M. Ruijter

Analysis of experiments aimed at understanding the genetic mechanisms of differentiation and growth of the heart, calls for detailed insights into cardiac growth and proliferation rate of myocytes and their precursors. Such insights in mouse heart development are currently lacking. We quantitatively assessed the 3D patterns of proliferation in the forming mouse heart and in the adjacent splanchnic mesoderm, from the onset of heart formation till the developed heart at late gestation. These results are presented in an interactive portable document format (Suppl. PDF) to facilitate communication and understanding. We show that the mouse splanchnic mesoderm is highly proliferative, and that the proliferation rate drops upon recruitment of cells into the cardiac lineage. Concomitantly, the proliferation rate locally increases at the sites of chamber formation, generating a regionalized proliferation pattern. Quantitative analysis shows a gradual decrease in proliferation rate of the ventricular walls with progression of development, and a base-to-top decline in proliferation rate in the trabecules. Our data offers clear insights into the growth and morphogenesis of the mouse heart and shows that in early development the phases of tube formation and chamber formation overlap. The resulting interactive quantitative 3D atlas of cardiac growth and morphogenesis provides a resource for interpretation of mechanistic studies.


Gastroenterology | 1992

Lactase gene expression during early development of rat small intestine

Edmond H. H. M. Rings; Piet A.J. de Boer; Antoon F.M. Moorman; Erik H. Van Beers; Jan Dekker; Robert K. Montgomery; Richard J. Grand; Hans A. Büller

Expression of lactase messenger (m) RNA and protein in rat small intestine during fetal and postnatal development was analyzed using in situ hybridization and immunohistochemistry. Lactase mRNA was first identified at 18 days of development, and lactase protein was first detected at day 20. Lactase mRNA and protein were present along the entire villus. Lactase mRNA increased, reaching a maximum at day 20. Just before birth a decrease in lactase mRNA was observed. In newborn intestine, lactase mRNA was present only from the base of the villus up to the mid-villus region and was undetectable up to the villus tips. Lactase protein continued to be expressed along the entire villus. These data show that expression of lactase mRNA and protein do not parallel, indicating a posttranscriptional control in fetal development. Lactase gene transcription is initiated late in gestation concomitant with villus formation and is exclusively seen in villus epithelial cells. The restriction after birth of lactase mRNA expression to cells at the villus base suggests the occurrence of a previously unknown step in postnatal differentiation of the enterocyte.


Journal of Histochemistry and Cytochemistry | 1997

Towards Quantitative In Situ Hybridization

Ard Jonker; Piet A.J. de Boer; Maurice J.B. van den Hoff; Wouter H. Lamers; Antoon F. M. Moorman

In situ hybridization analysis of tissue mRNA concentrations remains to be accepted as a quantitative technique, even though exposure of tissue sections to photographic emulsion is equivalent to Northern blot analysis. Because of the biological importance of in situ quantification of RNA sequences within a morphological context, we evaluated the quantitative aspects of this technique. In calibrated microscopic samples, autoradiographic signal (density of silver grains) was proportionate to the radioactivity present, to the exposure time, and to time of development of the photographic emulsion. Similar results were obtained with tissue sections, showing that all steps of the in situ hybridization protocol, before and including the detection of the signal, can be reproducibly performed. Furthermore, the integrated density of silver grains produced in liver and intestinal sections by the in situ hybridization procedure using 35S-labeled riboprobes is directly proportionate to the signal obtained by quantitative Northern blot analysis. The significance of this finding is that in situ quantification of RNA can be realized with high sensitivity and with the additional advantage of the possibility of localizing mRNA within the cells of interest. Application of this procedure on fetal and adult intestinal tissue showed that the carbamoylphosphate synthetase (CPS)-expressing epithelial cells of both tissues accumulated CPS mRNA to the same level but that whole-organ CPS mRNA levels decreased four- to fivefold in the same period, owing to a comparable decrease in the number of CPS-expressing cells in total intestinal tissue. (J Histochem Cytochem 45:413–423, 1997)

Collaboration


Dive into the Piet A.J. de Boer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaco Hagoort

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge