Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan M. Suski is active.

Publication


Featured researches published by Jan M. Suski.


Journal of Signal Transduction | 2012

Mitochondria-ros crosstalk in the control of cell death and aging.

Saverio Marchi; Carlotta Giorgi; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Sonia Missiroli; Simone Patergnani; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton

Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.


Cell Cycle | 2013

Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition

Massimo Bonora; Angela Bononi; Elena De Marchi; Carlotta Giorgi; Magdalena Lebiedzinska; Saverio Marchi; Simone Patergnani; Alessandro Rimessi; Jan M. Suski; Aleksandra Wojtala; Mariusz R. Wieckowski; Guido Kroemer; Lorenzo Galluzzi; Paolo Pinton

The term “mitochondrial permeability transition” (MPT) refers to an abrupt increase in the permeability of the inner mitochondrial membrane to low molecular weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate mitochondrial outer membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade as well as of caspase-independent cell death mechanisms. MPT appears to be mediated by the opening of the so-called “permeability transition pore complex” (PTPC), a poorly characterized and versatile supramolecular entity assembled at the junctions between the inner and outer mitochondrial membranes. In spite of considerable experimental efforts, the precise molecular composition of the PTPC remains obscure and only one of its constituents, cyclophilin D (CYPD), has been ascribed with a crucial role in the regulation of cell death. Conversely, the results of genetic experiments indicate that other major components of the PTPC, such as voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT), are dispensable for MPT-driven MOMP. Here, we demonstrate that the c subunit of the FO ATP synthase is required for MPT, mitochondrial fragmentation and cell death as induced by cytosolic calcium overload and oxidative stress in both glycolytic and respiratory cell models. Our results strongly suggest that, similar to CYPD, the c subunit of the FO ATP synthase constitutes a critical component of the PTPC.


Cell Calcium | 2012

Mitochondrial Ca2+ and apoptosis

Carlotta Giorgi; Federica Baldassari; Angela Bononi; Massimo Bonora; Elena De Marchi; Saverio Marchi; Sonia Missiroli; Simone Patergnani; Alessandro Rimessi; Jan M. Suski; Mariusz R. Wieckowski; Paolo Pinton

Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca2+) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca2+ homeostasis and in turn modulate the effectiveness of Ca2+-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca2+ overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.


Cell Communication and Signaling | 2011

Calcium signaling around Mitochondria Associated Membranes (MAMs)

Simone Patergnani; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Carlotta Giorgi; Saverio Marchi; Sonia Missiroli; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton

Calcium (Ca2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca2+ concentration is dependent either on Ca2+ influx from the extracellular space through the plasma membrane, or on Ca2+ release from intracellular Ca2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca2+ release and Ca2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.


Methods of Molecular Biology | 2012

Relation between mitochondrial membrane potential and ROS formation.

Jan M. Suski; Magdalena Lebiedzinska; Massimo Bonora; Paolo Pinton; Jerzy Duszyński; Mariusz R. Wieckowski

Mitochondria are considered as the main source of reactive oxygen species (ROS) in the cell. For this reason, they have been recognized as a source of various pathological conditions as well as aging. Chronic increase in the rate of ROS production is responsible for the accumulation of ROS-associated damages in DNA, proteins, and lipids, and may result in progressive cell dysfunctions and, in a consequence, apoptosis, increasing the overall probability of an organisms pathological conditions. The superoxide anion is the main undesired by-product of mitochondrial oxidative phosphorylation. Its production is triggered by a leak of electrons from the mitochondrial respiratory chain and the reaction of these electrons with O(2). Superoxide dismutase (MnSOD, SOD2) from the mitochondrial matrix as well as superoxide dismutase (Cu/ZnSOD, SOD1) present in small amounts in the mitochondrial intramembrane space, convert superoxide anion to hydrogen peroxide, which can be then converted by catalase to harmless H(2)O. In this chapter, we describe a relation between mitochondrial membrane potential and the rate of ROS formation. We present different methods applicable for isolated mitochondria or intact cells. We also present experiments demonstrating that a magnitude and a direction (increase or decrease) of a change in mitochondrial ROS production depends on the metabolic state of this organelle.


Proceedings of the National Academy of Sciences of the United States of America | 2015

p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner

Carlotta Giorgi; Massimo Bonora; Giovanni Sorrentino; Sonia Missiroli; Federica Poletti; Jan M. Suski; Fabian Galindo Ramirez; Rosario Rizzuto; Francesco Di Virgilio; Ester Zito; Pier Paolo Pandolfi; Mariusz R. Wieckowski; Fabio Mammano; Giannino Del Sal; Paolo Pinton

Significance Accumulating evidence has underscored the role of cytosolic p53 in promoting cell death. Different reports have revealed that p53 participates in apoptosis induction by acting directly at mitochondria. However, because p53 can mediate apoptosis without its DNA-binding domain (the domain proposed to be fundamental for the targeting of p53 to mitochondria), the mitochondrial localization of p53 is likely not the only transcription-independent mechanism by which p53 promotes apoptosis. Here we demonstrate that p53 at the endoplasmic reticulum (ER) and at mitochondria-associated membranes, interacting with sarco/ER Ca2+-ATPase pumps, modulates ER–mitochondria cross-talk and, in turn, Ca2+-dependent apoptosis. The tumor suppressor p53 is a key protein in preventing cell transformation and tumor progression. Activated by a variety of stimuli, p53 regulates cell-cycle arrest and apoptosis. Along with its well-documented transcriptional control over cell-death programs within the nucleus, p53 exerts crucial although still poorly understood functions in the cytoplasm, directly modulating the apoptotic response at the mitochondrial level. Calcium (Ca2+) transfer between the endoplasmic reticulum (ER) and mitochondria represents a critical signal in the induction of apoptosis. However, the mechanism controlling this flux in response to stress stimuli remains largely unknown. Here we show that, in the cytoplasm, WT p53 localizes at the ER and at specialized contact domains between the ER and mitochondria (mitochondria-associated membranes). We demonstrate that, upon stress stimuli, WT p53 accumulates at these sites and modulates Ca2+ homeostasis. Mechanistically, upon activation, WT p53 directly binds to the sarco/ER Ca2+-ATPase (SERCA) pump at the ER, changing its oxidative state and thus leading to an increased Ca2+ load, followed by an enhanced transfer to mitochondria. The consequent mitochondrial Ca2+ overload causes in turn alterations in the morphology of this organelle and induction of apoptosis. Pharmacological inactivation of WT p53 or naturally occurring p53 missense mutants inhibits SERCA pump activity at the ER, leading to a reduction of the Ca2+ signaling from the ER to mitochondria. These findings define a critical nonnuclear function of p53 in regulating Ca2+ signal-dependent apoptosis.


Mitochondrion | 2012

Mitochondrial calcium homeostasis as potential target for mitochondrial medicine

Carlotta Giorgi; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Saverio Marchi; Sonia Missiroli; Simone Patergnani; Federica Poletti; Alessandro Rimessi; Jan M. Suski; Mariusz R. Wieckowski; Paolo Pinton

Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca2+) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca2+ homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca2+ traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies.


Purinergic Signalling | 2012

ATP synthesis and storage

Massimo Bonora; Simone Patergnani; Alessandro Rimessi; Elena De Marchi; Jan M. Suski; Angela Bononi; Carlotta Giorgi; Saverio Marchi; Sonia Missiroli; Federica Poletti; Mariusz R. Wieckowski; Paolo Pinton

Since 1929, when it was discovered that ATP is a substrate for muscle contraction, the knowledge about this purine nucleotide has been greatly expanded. Many aspects of cell metabolism revolve around ATP production and consumption. It is important to understand the concepts of glucose and oxygen consumption in aerobic and anaerobic life and to link bioenergetics with the vast amount of reactions occurring within cells. ATP is universally seen as the energy exchange factor that connects anabolism and catabolism but also fuels processes such as motile contraction, phosphorylations, and active transport. It is also a signalling molecule in the purinergic signalling mechanisms. In this review, we will discuss all the main mechanisms of ATP production linked to ADP phosphorylation as well the regulation of these mechanisms during stress conditions and in connection with calcium signalling events. Recent advances regarding ATP storage and its special significance for purinergic signalling will also be reviewed.


Advances in Experimental Medicine and Biology | 2012

Mitochondria-Associated Membranes (MAMs) as Hotspot Ca 2+ Signaling Units

Angela Bononi; Sonia Missiroli; Federica Poletti; Jan M. Suski; Chiara Agnoletto; Massimo Bonora; Elena De Marchi; Carlotta Giorgi; Saverio Marchi; Simone Patergnani; Alessandro Rimessi; Mariusz R. Wieckowski; Paolo Pinton

The tight interplay between endoplasmic reticulum (ER) and mitochondria is a key determinant of cell function and survival through the control of intracellular calcium (Ca(2+)) signaling. The specific sites of physical association between ER and mitochondria are known as mitochondria-associated membranes (MAMs). It has recently become clear that MAMs are crucial for highly efficient transmission of Ca(2+) from the ER to mitochondria, thus controlling fundamental processes involved in energy production and also determining cell fate by triggering or preventing apoptosis. In this contribution, we summarize the main features of the Ca(2+)-signaling toolkit, covering also the latest breakthroughs in the field, such as the identification of novel candidate proteins implicated in mitochondrial Ca(2+) transport and the recent direct characterization of the high-Ca(2+) microdomains between ER and mitochondria. We review the main functions of these two organelles, with special emphasis on Ca(2+) handling and on the structural and molecular foundations of the signaling contacts between them. Additionally, we provide important examples of the physiopathological role of this cross-talk, briefly describing the key role played by MAMs proteins in many diseases, and shedding light on the essential role of mitochondria-ER interactions in the maintenance of cellular homeostasis and the determination of cell fate.


Cell Death & Differentiation | 2014

Tumor necrosis factor- α impairs oligodendroglial differentiation through a mitochondria-dependent process

Massimo Bonora; E De Marchi; Simone Patergnani; Jan M. Suski; F Celsi; Angela Bononi; Carlotta Giorgi; Saverio Marchi; Alessandro Rimessi; Jerzy Duszyński; Tullio Pozzan; Mariusz R. Wieckowski; Paolo Pinton

Mitochondrial defects, affecting parameters such as mitochondrial number and shape, levels of respiratory chain complex components and markers of oxidative stress, have been associated with the appearance and progression of multiple sclerosis. Nevertheless, mitochondrial physiology has never been monitored during oligodendrocyte progenitor cell (OPC) differentiation, especially in OPCs challenged with proinflammatory cytokines. Here, we show that tumor necrosis factor alpha (TNF-α) inhibits OPC differentiation, accompanied by altered mitochondrial calcium uptake, mitochondrial membrane potential, and respiratory complex I activity as well as increased reactive oxygen species production. Treatment with a mitochondrial uncoupler (FCCP) to mimic mitochondrial impairment also causes cells to accumulate at the progenitor stage. Interestingly, AMP-activated protein kinase (AMPK) levels increase during TNF-α exposure and inhibit OPC differentiation. Overall, our data indicate that TNF-α induces metabolic changes, driven by mitochondrial impairment and AMPK activation, leading to the inhibition of OPC differentiation.

Collaboration


Dive into the Jan M. Suski's collaboration.

Top Co-Authors

Avatar

Mariusz R. Wieckowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerzy Duszyński

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magdalena Lebiedzinska

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge