Jerzy Duszyński
Nencki Institute of Experimental Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerzy Duszyński.
Nature Protocols | 2009
Mariusz R. Wieckowski; Carlotta Giorgi; Magdalena Lebiedzinska; Jerzy Duszyński; Paolo Pinton
Many cellular processes require the proper cooperation between mitochondria and the endoplasmic reticulum (ER). Several recent works show that their functional interactions rely on dynamic structural contacts between both organelles. Such contacts, called mitochondria-associated membranes (MAMs), are crucial for the synthesis and intracellular transport of phospholipids, as well as for intracellular Ca2+ signaling and for the determination of mitochondrial structure. Although several techniques are available to isolate mitochondria, only few are specifically tuned to the isolation of MAM, containing unique regions of ER membranes attached to the outer mitochondrial membrane and mitochondria without contamination from other organelles (i.e., pure mitochondria). Here we provide optimized protocols to isolate these fractions from tissues and cells. These procedures require 4–5 h and can be easily modified and adapted to different tissues and cell types.
Journal of Signal Transduction | 2012
Saverio Marchi; Carlotta Giorgi; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Sonia Missiroli; Simone Patergnani; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton
Reactive oxygen species (ROS) are highly reactive molecules, mainly generated inside mitochondria that can oxidize DNA, proteins, and lipids. At physiological levels, ROS function as “redox messengers” in intracellular signalling and regulation, whereas excess ROS induce cell death by promoting the intrinsic apoptotic pathway. Recent work has pointed to a further role of ROS in activation of autophagy and their importance in the regulation of aging. This review will focus on mitochondria as producers and targets of ROS and will summarize different proteins that modulate the redox state of the cell. Moreover, the involvement of ROS and mitochondria in different molecular pathways controlling lifespan will be reported, pointing out the role of ROS as a “balance of power,” directing the cell towards life or death.
Science | 2010
Carlotta Giorgi; Keisuke Ito; Hui Kuan Lin; Clara Santangelo; Mariusz R. Wieckowski; Magdalena Lebiedzinska; Angela Bononi; Massimo Bonora; Jerzy Duszyński; Rosa Bernardi; Rosario Rizzuto; Carlo Tacchetti; Paolo Pinton; Pier Paolo Pandolfi
Promoting Apoptosis During acute disease, the promyelocytic leukemia (PML) protein becomes fused to another protein as a result of a chromosomal translocation. This protein appears to have multiple and varied functions, including the ability to form distinctive complexes in the nucleus that suppress tumorigenesis and promote apoptotic cell death. Giorgi et al. (p. 1247, published online 28 October; see the Perspective by Culjkovic-Kraljacic and Borden) have proposed a mechanism by which PML influences the cellular signals that promote apoptosis. The protein was localized at sites of contact between the endoplasmic reticulum and mitochondria, where it associated with a calcium channel, a protein kinase, and a protein phosphatase, to regulate calcium mobilization into the mitochondrion, which then triggers the cell death program. The promyelocytic leukemia protein likely influences apoptosis by influencing a calcium channel in the endoplasmic reticulum. The promyelocytic leukemia (PML) tumor suppressor is a pleiotropic modulator of apoptosis. However, the molecular basis for such a diverse proapoptotic role is currently unknown. We show that extranuclear Pml was specifically enriched at the endoplasmic reticulum (ER) and at the mitochondria-associated membranes, signaling domains involved in ER-to-mitochondria calcium ion (Ca2+) transport and in induction of apoptosis. We found Pml in complexes of large molecular size with the inositol 1,4,5-trisphosphate receptor (IP3R), protein kinase Akt, and protein phosphatase 2a (PP2a). Pml was essential for Akt- and PP2a-dependent modulation of IP3R phosphorylation and in turn for IP3R-mediated Ca2+ release from ER. Our findings provide a mechanistic explanation for the pleiotropic role of Pml in apoptosis and identify a pharmacological target for the modulation of Ca2+ signals.
FEBS Letters | 1983
Joseph M. Tager; R. J. A. Wanders; Albert K. Groen; W. Kunz; Ralf Bohnensack; U. Küster; G. Letko; G. Böhme; Jerzy Duszyński; Lech Wojtczak
The control theory of Kacser and Burns [in: Rate Control of Biological Processes (Davies, D.D. ed) pp. 65–104, Cambridge University Press, London, 1973] and Heinrich and Rapoport ([Eur. J. Biochem. (1974) 42, 97‐105] has been used to quantify the amount of control exerted by different steps on mitochondrial oxidative phosphorylation in rat‐liver mitochondria. Inhibitors were used to manipulate the amount of active enzyme. The control strength of the adenine nucleotide translocator was measured by carrying out titrations with carboxyatractyloside. In state 4, the control strength of the translocator was found to be zero. As the rate of respiration was increased by adding hexokinase, the control strength of the translocator increased to a maximum value of ∼30% at ∼80% of state 3 respiration. In state 3, control of respiration is distributed between a number of steps, including the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase. The measured values for the distribution of control agree very well with those calculated with the aid of a model for mitochondrial oxidative phosphorylation developed by Bohnensack [Biochim. Biophys. Acta (1982) 680, 271–280].
Cell Communication and Signaling | 2011
Simone Patergnani; Jan M. Suski; Chiara Agnoletto; Angela Bononi; Massimo Bonora; Elena De Marchi; Carlotta Giorgi; Saverio Marchi; Sonia Missiroli; Federica Poletti; Alessandro Rimessi; Jerzy Duszyński; Mariusz R. Wieckowski; Paolo Pinton
Calcium (Ca2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca2+ concentration is dependent either on Ca2+ influx from the extracellular space through the plasma membrane, or on Ca2+ release from intracellular Ca2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca2+ release and Ca2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.
The International Journal of Biochemistry & Cell Biology | 2009
Magdalena Lebiedzinska; Aleck W.E. Jones; Jerzy Duszyński; Mariusz R. Wieckowski
Several recent works show structurally and functionally dynamic contacts between mitochondria, the plasma membrane, the endoplasmic reticulum, and other subcellular organelles. Many cellular processes require proper cooperation between the plasma membrane, the nucleus and subcellular vesicular/tubular networks such as mitochondria and the endoplasmic reticulum. It has been suggested that such contacts are crucial for the synthesis and intracellular transport of phospholipids as well as for intracellular Ca(2+) homeostasis, controlling fundamental processes like motility and contraction, secretion, cell growth, proliferation and apoptosis. Close contacts between smooth sub-domains of the endoplasmic reticulum and mitochondria have been shown to be required also for maintaining mitochondrial structure. The overall distance between the associating organelle membranes as quantified by electron microscopy is small enough to allow contact formation by proteins present on their surfaces, allowing and regulating their interactions. In this review we give a historical overview of studies on organelle interactions, and summarize the present knowledge and hypotheses concerning their regulation and (patho)physiological consequences.
Methods of Molecular Biology | 2012
Jan M. Suski; Magdalena Lebiedzinska; Massimo Bonora; Paolo Pinton; Jerzy Duszyński; Mariusz R. Wieckowski
Mitochondria are considered as the main source of reactive oxygen species (ROS) in the cell. For this reason, they have been recognized as a source of various pathological conditions as well as aging. Chronic increase in the rate of ROS production is responsible for the accumulation of ROS-associated damages in DNA, proteins, and lipids, and may result in progressive cell dysfunctions and, in a consequence, apoptosis, increasing the overall probability of an organisms pathological conditions. The superoxide anion is the main undesired by-product of mitochondrial oxidative phosphorylation. Its production is triggered by a leak of electrons from the mitochondrial respiratory chain and the reaction of these electrons with O(2). Superoxide dismutase (MnSOD, SOD2) from the mitochondrial matrix as well as superoxide dismutase (Cu/ZnSOD, SOD1) present in small amounts in the mitochondrial intramembrane space, convert superoxide anion to hydrogen peroxide, which can be then converted by catalase to harmless H(2)O. In this chapter, we describe a relation between mitochondrial membrane potential and the rate of ROS formation. We present different methods applicable for isolated mitochondria or intact cells. We also present experiments demonstrating that a magnitude and a direction (increase or decrease) of a change in mitochondrial ROS production depends on the metabolic state of this organelle.
American Journal of Pathology | 2010
Dominika Nowis; Michał Mączewski; Urszula Mackiewicz; Marek Kujawa; Anna Ratajska; Mariusz R. Wieckowski; Grzegorz M. Wilczynski; Monika Malinowska; Jacek Bil; Pawel Salwa; Marek Bugajski; Cezary Wójcik; Maciej Siński; Piotr Abramczyk; Magdalena Winiarska; Anna Dąbrowska-Iwanicka; Jerzy Duszyński; Marek Jakóbisiak; Jakub Golab
Recent case reports provided alarming signals that treatment with bortezomib might be associated with cardiac events. In all reported cases, patients experiencing cardiac problems were previously or concomitantly treated with other chemotherapeutics including cardiotoxic anthracyclines. Therefore, it is difficult to distinguish which components of the therapeutic regimens contribute to cardiotoxicity. Here, we addressed the influence of bortezomib on cardiac function in rats that were not treated with other drugs. Rats were treated with bortezomib at a dose of 0.2 mg/kg thrice weekly. Echocardiography, histopathology, and electron microscopy were used to evaluate cardiac function and structural changes. Respiration of the rat heart mitochondria was measured polarographically. Cell culture experiments were used to determine the influence of bortezomib on cardiomyocyte survival, contractility, Ca(2+) fluxes, induction of endoplasmic reticulum stress, and autophagy. Our findings indicate that bortezomib treatment leads to left ventricular contractile dysfunction manifested by a significant drop in left ventricle ejection fraction. Dramatic ultrastructural abnormalities of cardiomyocytes, especially within mitochondria, were accompanied by decreased ATP synthesis and decreased cardiomyocyte contractility. Monitoring of cardiac function in bortezomib-treated patients should be implemented to evaluate how frequently cardiotoxicity develops especially in patients with pre-existing cardiac conditions, as well as when using additional cardiotoxic drugs.
Methods in Enzymology | 2014
Aleksandra Wojtala; Massimo Bonora; Dominika Malinska; Paolo Pinton; Jerzy Duszyński; Mariusz R. Wieckowski
Mitochondria are considered one of the main sources of reactive oxygen species (ROS). The overgeneration of ROS can evoke an intracellular state of oxidative stress, leading to permanent cell damage. Thus, the intracellular accumulation of ROS may not only disrupt the functions of specific tissues and organs but also lead to the premature death of the entire organism. Less severe increases in ROS levels may lead to the nonlethal oxidation of fundamental cellular components, such as proteins, phospholipids, and DNA, hence exerting a mutagenic effect that promotes oncogenesis and tumor progression. Here, we describe the use of chemical probes for the rapid detection of ROS in intact and permeabilized adherent cells by fluorescence microscopy and fluorometry. Moreover, after discussing the limitations described in the literature for the fluorescent probes presented herein, we recommend methods to assess the production of specific ROS in various fields of investigation, including the study of oncometabolism.
Archives of Biochemistry and Biophysics | 2009
Magdalena Lebiedzinska; Jerzy Duszyński; Rosario Rizzuto; Paolo Pinton; Mariusz R. Wieckowski
Mammalian life span can be controlled by p66Shc protein through regulation of cellular response to oxidative stress. We investigated age-related changes in the amount of p66Shc and its Ser36-phosphorylated form in various mouse organs and tissues and correlated it with the level of antioxidant enzymes. Comparing to the newborn, in adult 6-month-old mice, the level of p66Shc was increased particularly in liver, lungs, skin and diaphragm. In older animals the level of p66Shc decreased while signaling pathway responsible for Ser36 phosphorylation of p66Shc protein seemed to be continually enhanced. The amount of p66Shc phosphorylated at Ser36, significantly increased with age, resulted in higher free radical production and, in consequence accumulation of damages caused by free radicals. The increased amount of Ser36-phosphorylated p66Shc in livers of 12- and 23-month-old mice was correlated with the decreased level of antioxidant enzymes. Moreover, we found that p66Shc is a resident of mitochondria- and plasma membrane-associated membranes and that its level there depends on the age of animal.