Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Philipp Mallm is active.

Publication


Featured researches published by Jan-Philipp Mallm.


Nature Structural & Molecular Biology | 2012

Genome-wide nucleosome positioning during embryonic stem cell development

Vladimir B. Teif; Yevhen Vainshtein; Maïwen Caudron-Herger; Jan-Philipp Mallm; Caroline Marth; Thomas Höfer; Karsten Rippe

We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5–7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning.


Cell Reports | 2015

HP1 is involved in regulating the global impact of DNA methylation on alternative splicing.

Ahuvi Yearim; Sahar Gelfman; Ronna Shayevitch; Shai Melcer; Ohad Glaich; Jan-Philipp Mallm; Malka Nissim-Rafinia; Ayelet-Hashahar Shapira Cohen; Karsten Rippe; Eran Meshorer; Gil Ast

The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1), which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this genes alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylations significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.


Genome Research | 2014

Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development

Vladimir B. Teif; Daria A. Beshnova; Yevhen Vainshtein; Caroline Marth; Jan-Philipp Mallm; Thomas Höfer; Karsten Rippe

During differentiation of embryonic stem cells, chromatin reorganizes to establish cell type-specific expression programs. Here, we have dissected the linkages between DNA methylation (5mC), hydroxymethylation (5hmC), nucleosome repositioning, and binding of the transcription factor CTCF during this process. By integrating MNase-seq and ChIP-seq experiments in mouse embryonic stem cells (ESC) and their differentiated counterparts with biophysical modeling, we found that the interplay between these factors depends on their genomic context. The mostly unmethylated CpG islands have reduced nucleosome occupancy and are enriched in cell type-independent binding sites for CTCF. The few remaining methylated CpG dinucleotides are preferentially associated with nucleosomes. In contrast, outside of CpG islands most CpGs are methylated, and the average methylation density oscillates so that it is highest in the linker region between nucleosomes. Outside CpG islands, binding of TET1, an enzyme that converts 5mC to 5hmC, is associated with labile, MNase-sensitive nucleosomes. Such nucleosomes are poised for eviction in ESCs and become stably bound in differentiated cells where the TET1 and 5hmC levels go down. This process regulates a class of CTCF binding sites outside CpG islands that are occupied by CTCF in ESCs but lose the protein during differentiation. We rationalize this cell type-dependent targeting of CTCF with a quantitative biophysical model of competitive binding with the histone octamer, depending on the TET1, 5hmC, and 5mC state.


Acta Neuropathologica | 2015

Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity

Meike Hick; Ulrike Herrmann; Sascha W. Weyer; Jan-Philipp Mallm; Jakob-Andreas Tschäpe; M. Borgers; Marc Mercken; Fabian C. Roth; Andreas Draguhn; Lutz Slomianka; David P. Wolfer; Martin Korte; Ulrike Müller

The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsβ, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.


Infection, Genetics and Evolution | 2009

Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico.

Segun Fatumo; Kitiporn Plaimas; Jan-Philipp Mallm; Gunnar Schramm; Ezekiel Adebiyi; Marcus Oswald; Roland Eils; Rainer König

Malaria is one of the worlds most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Biomedical research could enable treating the disease by effectively and specifically targeting essential enzymes of this parasite. However, the parasite has developed resistance to existing drugs making it indispensable to discover new drugs. We have established a simple computational tool which analyses the topology of the metabolic network of P. falciparum to identify essential enzymes as possible drug targets. We investigated the essentiality of a reaction in the metabolic network by deleting (knocking-out) such a reaction in silico. The algorithm selected neighbouring compounds of the investigated reaction that had to be produced by alternative biochemical pathways. Using breadth first searches, we tested qualitatively if these products could be generated by reactions that serve as potential deviations of the metabolic flux. With this we identified 70 essential reactions. Our results were compared with a comprehensive list of 38 targets of approved malaria drugs. When combining our approach with an in silico analysis performed recently [Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., 2004. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917-924] we could improve the precision of the prediction results. Finally we present a refined list of 22 new potential candidate targets for P. falciparum, half of which have reasonable evidence to be valid targets against micro-organisms and cancer.


Molecular Systems Biology | 2014

Specificity, propagation, and memory of pericentric heterochromatin

Katharina Müller-Ott; Fabian Erdel; Anna Matveeva; Jan-Philipp Mallm; Anne Rademacher; Matthias Hahn; Caroline Bauer; Qin Zhang; Sabine Kaltofen; Gunnar Schotta; Thomas Höfer; Karsten Rippe

The cell establishes heritable patterns of active and silenced chromatin via interacting factors that set, remove, and read epigenetic marks. To understand how the underlying networks operate, we have dissected transcriptional silencing in pericentric heterochromatin (PCH) of mouse fibroblasts. We assembled a quantitative map for the abundance and interactions of 16 factors related to PCH in living cells and found that stably bound complexes of the histone methyltransferase SUV39H1/2 demarcate the PCH state. From the experimental data, we developed a predictive mathematical model that explains how chromatin‐bound SUV39H1/2 complexes act as nucleation sites and propagate a spatially confined PCH domain with elevated histone H3 lysine 9 trimethylation levels via chromatin dynamics. This “nucleation and looping” mechanism is particularly robust toward transient perturbations and stably maintains the PCH state. These features make it an attractive model for establishing functional epigenetic domains throughout the genome based on the localized immobilization of chromatin‐modifying enzymes.


Molecular Systems Biology | 2016

Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children

Tobias Bauer; Saskia Trump; Naveed Ishaque; Loreen Thürmann; Lei Gu; Mario Bauer; Matthias Bieg; Zuguang Gu; Dieter Weichenhan; Jan-Philipp Mallm; Stefan Röder; Gunda Herberth; Eiko Takada; Oliver Mücke; Marcus Winter; Kristin M. Junge; Konrad Grützmann; Ulrike Rolle-Kampczyk; Qi Wang; Christian Lawerenz; Michael Borte; Tobias Polte; Matthias Schlesner; Michaela Schanne; Stefan Wiemann; Christina Geörg; Hendrik G. Stunnenberg; Christoph Plass; Karsten Rippe; Junichiro Mizuguchi

Epigenetic mechanisms have emerged as links between prenatal environmental exposure and disease risk later in life. Here, we studied epigenetic changes associated with maternal smoking at base pair resolution by mapping DNA methylation, histone modifications, and transcription in expectant mothers and their newborn children. We found extensive global differential methylation and carefully evaluated these changes to separate environment associated from genotype‐related DNA methylation changes. Differential methylation is enriched in enhancer elements and targets in particular “commuting” enhancers having multiple, regulatory interactions with distal genes. Longitudinal whole‐genome bisulfite sequencing revealed that DNA methylation changes associated with maternal smoking persist over years of life. Particularly in children prenatal environmental exposure leads to chromatin transitions into a hyperactive state. Combined DNA methylation, histone modification, and gene expression analyses indicate that differential methylation in enhancer regions is more often functionally translated than methylation changes in promoters or non‐regulatory elements. Finally, we show that epigenetic deregulation of a commuting enhancer targeting c‐Jun N‐terminal kinase 2 (JNK2) is linked to impaired lung function in early childhood.


Nature Immunology | 2017

Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues

Michael Delacher; Charles D. Imbusch; Dieter Weichenhan; Achim Breiling; Agnes Hotz-Wagenblatt; Ulrike Träger; Ann Cathrin Hofer; Danny Kägebein; Qi Wang; Felix Frauhammer; Jan-Philipp Mallm; Katharina Bauer; Carl Herrmann; Philipp A. Lang; Benedikt Brors; Christoph Plass; Markus Feuerer

Regulatory T cells (Treg cells) perform two distinct functions: they maintain self-tolerance, and they support organ homeostasis by differentiating into specialized tissue Treg cells. We found that epigenetic modifications defined the molecular characteristics of tissue Treg cells. Tagmentation-based whole-genome bisulfite sequencing revealed more than 11,000 regions that were methylated differentially in pairwise comparisons of tissue Treg cell populations and lymphoid T cells. Similarities in the epigenetic landscape led to the identification of a common tissue Treg cell population that was present in many organs and was characterized by gain and loss of DNA methylation that included many gene sites associated with the TH2 subset of helper T cells, such as the gene encoding cytokine IL-33 receptor ST2, as well as the production of tissue-regenerative factors. Furthermore, the ST2-expressing population was dependent on the transcriptional regulator BATF and could be expanded by IL-33. Thus, tissue Treg cells integrate multiple waves of epigenetic reprogramming that define their tissue-restricted specialization.


Nature Genetics | 2017

DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats

David Brocks; Christopher R. Schmidt; Michael Daskalakis; Hyo Sik Jang; Nakul M. Shah; Daofeng Li; Jing Li; Bo Zhang; Yiran Hou; Sara Laudato; Daniel B. Lipka; Johanna Schott; Holger Bierhoff; Yassen Assenov; Monika Helf; Alzbeta Ressnerova; Saiful Islam; Anders M. Lindroth; Simon Haas; Marieke Essers; Charles D. Imbusch; Benedikt Brors; Ina Oehme; Olaf Witt; Michael Lübbert; Jan-Philipp Mallm; Karsten Rippe; Rainer Will; Dieter Weichenhan; Georg Stoecklin

Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi), primarily based on candidate-gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric ORFs translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi treatment coincided with DNA hypomethylation and gain of classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites, as we found TINATs to be encoded in solitary long terminal repeats of the ERV9/LTR12 family, which are epigenetically repressed in virtually all normal cells.


Methods | 2013

Taking into account nucleosomes for predicting gene expression

Vladimir B. Teif; Fabian Erdel; Daria A. Beshnova; Yevhen Vainshtein; Jan-Philipp Mallm; Karsten Rippe

The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.

Collaboration


Dive into the Jan-Philipp Mallm's collaboration.

Top Co-Authors

Avatar

Karsten Rippe

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Benedikt Brors

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Dieter Weichenhan

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Fabian Erdel

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Vladimir B. Teif

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Charles D. Imbusch

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Daniel B. Lipka

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Felix Frauhammer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marieke Essers

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Naveed Ishaque

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge