Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir B. Teif is active.

Publication


Featured researches published by Vladimir B. Teif.


Nature Structural & Molecular Biology | 2012

Genome-wide nucleosome positioning during embryonic stem cell development

Vladimir B. Teif; Yevhen Vainshtein; Maïwen Caudron-Herger; Jan-Philipp Mallm; Caroline Marth; Thomas Höfer; Karsten Rippe

We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5–7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning.


Progress in Biophysics & Molecular Biology | 2011

Condensed DNA: Condensing the concepts

Vladimir B. Teif; Klemen Bohinc

DNA is stored in vivo in a highly compact, so-called condensed phase, where gene regulatory processes are governed by the intricate interplay between different states of DNA compaction. These systems often have surprising properties, which one would not predict from classical concepts of dilute solutions. The mechanistic details of DNA packing are essential for its functioning, as revealed by the recent developments coming from biochemistry, electrostatics, statistical mechanics, and molecular and cell biology. Different aspects of condensed DNA behavior are linked to each other, but the links are often hidden in the bulk of experimental and theoretical details. Here we try to condense some of these concepts and provide interconnections between the different fields. After a brief description of main experimental features of DNA condensation inside viruses, bacteria, eukaryotes and the test tube, main theoretical approaches for the description of these systems are presented. We end up with an extended discussion of the role of DNA condensation in the context of gene regulation and mention potential applications of DNA condensation in gene therapy and biotechnology.


Genome Research | 2014

Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development

Vladimir B. Teif; Daria A. Beshnova; Yevhen Vainshtein; Caroline Marth; Jan-Philipp Mallm; Thomas Höfer; Karsten Rippe

During differentiation of embryonic stem cells, chromatin reorganizes to establish cell type-specific expression programs. Here, we have dissected the linkages between DNA methylation (5mC), hydroxymethylation (5hmC), nucleosome repositioning, and binding of the transcription factor CTCF during this process. By integrating MNase-seq and ChIP-seq experiments in mouse embryonic stem cells (ESC) and their differentiated counterparts with biophysical modeling, we found that the interplay between these factors depends on their genomic context. The mostly unmethylated CpG islands have reduced nucleosome occupancy and are enriched in cell type-independent binding sites for CTCF. The few remaining methylated CpG dinucleotides are preferentially associated with nucleosomes. In contrast, outside of CpG islands most CpGs are methylated, and the average methylation density oscillates so that it is highest in the linker region between nucleosomes. Outside CpG islands, binding of TET1, an enzyme that converts 5mC to 5hmC, is associated with labile, MNase-sensitive nucleosomes. Such nucleosomes are poised for eviction in ESCs and become stably bound in differentiated cells where the TET1 and 5hmC levels go down. This process regulates a class of CTCF binding sites outside CpG islands that are occupied by CTCF in ESCs but lose the protein during differentiation. We rationalize this cell type-dependent targeting of CTCF with a quantitative biophysical model of competitive binding with the histone octamer, depending on the TET1, 5hmC, and 5mC state.


Nucleic Acids Research | 2009

Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities

Vladimir B. Teif; Karsten Rippe

Nucleosome positions on the DNA are determined by the intrinsic affinities of histone proteins to a given DNA sequence and by the ATP-dependent activities of chromatin remodeling complexes that can translocate nucleosomes with respect to the DNA. Here, we report a theoretical approach that takes into account both contributions. In the theoretical analysis two types of experiments have been considered: in vitro experiments with a single reconstituted nucleosome and in vivo genome-scale mapping of nucleosome positions. The effect of chromatin remodelers was described by iteratively redistributing the nucleosomes according to certain rules until a new steady state was reached. Three major classes of remodeler activities were identified: (i) the establishment of a regular nucleosome spacing in the vicinity of a strong positioning signal acting as a boundary, (ii) the enrichment/depletion of nucleosomes through amplification of intrinsic DNA-sequence-encoded signals and (iii) the removal of nucleosomes from high-affinity binding sites. From an analysis of data for nucleosome positions in resting and activated human CD4+ T cells [Schones et al., Cell 132, p. 887] it was concluded that the redistribution of a nucleosome map to a new state is greatly facilitated if the remodeler complex translocates the nucleosome with a preferred directionality.


PLOS Computational Biology | 2014

Regulation of the Nucleosome Repeat Length In Vivo by the DNA Sequence, Protein Concentrations and Long-Range Interactions

Daria A. Beshnova; Andrey G. Cherstvy; Yevhen Vainshtein; Vladimir B. Teif

The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning.


Journal of Physics: Condensed Matter | 2010

Statistical–mechanical lattice models for protein–DNA binding in chromatin

Vladimir B. Teif; Karsten Rippe

Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.


Nucleic Acids Research | 2007

General transfer matrix formalism to calculate DNA–protein–drug binding in gene regulation: application to OR operator of phage λ

Vladimir B. Teif

The transfer matrix methodology is proposed as a systematic tool for the statistical–mechanical description of DNA–protein–drug binding involved in gene regulation. We show that a genetic system of several cis-regulatory modules is calculable using this method, considering explicitly the site-overlapping, competitive, cooperative binding of regulatory proteins, their multilayer assembly and DNA looping. In the methodological section, the matrix models are solved for the basic types of short- and long-range interactions between DNA-bound proteins, drugs and nucleosomes. We apply the matrix method to gene regulation at the OR operator of phage λ. The transfer matrix formalism allowed the description of the λ-switch at a single-nucleotide resolution, taking into account the effects of a range of inter-protein distances. Our calculations confirm previously established roles of the contact CI–Cro–RNAP interactions. Concerning long-range interactions, we show that while the DNA loop between the OR and OL operators is important at the lysogenic CI concentrations, the interference between the adjacent promoters PR and PRM becomes more important at small CI concentrations. A large change in the expression pattern may arise in this regime due to anticooperative interactions between DNA-bound RNA polymerases. The applicability of the matrix method to more complex systems is discussed.


Biophysical Journal | 2010

A Lattice Model for Transcription Factor Access to Nucleosomal DNA

Vladimir B. Teif; Ramona Ettig; Karsten Rippe

Nucleosomes, the basic repeating unit of chromatin, consist of 147 basepairs of DNA that are wrapped in almost two turns around a histone protein octamer core. Because ∼3/4 of the human genomic DNA is found within nucleosomes, their position and DNA interaction is an essential determinant for the DNA access of gene-specific transcription factors and other proteins. Here, a DNA lattice model was developed for describing ligand binding in the presence of a nucleosome. The model takes into account intermediate states, in which DNA is partially unwrapped from the histone octamer. This facilitates access of transcription factors to up to 60 DNA basepairs located in the outer turn of nucleosomal DNA, while the inner DNA turn was found to be more resistant to competitive ligand binding. As deduced from quantitative comparisons with recently published experimental data, our model provides a better description than the previously used all-or-none lattice-binding model. Importantly, nucleosome-occupancy maps predicted by the nucleosome-unwrapping model also differed significantly when partial unwrapping of nucleosomal DNA was considered. In addition, large effects on the cooperative binding of transcription factors to multiple binding sites occluded by the nucleosome were apparent. These findings indicate that partial unwrapping of DNA from the histone octamer needs to be taken into account in quantitative models of gene regulation in chromatin.


Bioinformatics | 2013

Modeling nucleosome position distributions from experimental nucleosome positioning maps

Robert Schöpflin; Vladimir B. Teif; Oliver Müller; Christin Weinberg; Karsten Rippe; Gero Wedemann

MOTIVATION Recent experimental advancements allow determining positions of nucleosomes for complete genomes. However, the resulting nucleosome occupancy maps are averages of heterogeneous cell populations. Accordingly, they represent a snapshot of a dynamic ensemble at a single time point with an overlay of many configurations from different cells. To study the organization of nucleosomes along the genome and to understand the mechanisms of nucleosome translocation, it is necessary to retrieve features of specific conformations from the population average. RESULTS Here, we present a method for identifying non-overlapping nucleosome configurations that combines binary-variable analysis and a Monte Carlo approach with a simulated annealing scheme. In this manner, we obtain specific nucleosome configurations and optimized solutions for the complex positioning patterns from experimental data. We apply the method to compare nucleosome positioning at transcription factor binding sites in different mouse cell types. Our method can model nucleosome translocations at regulatory genomic elements and generate configurations for simulations of the spatial folding of the nucleosome chain. AVAILABILITY Source code, precompiled binaries, test data and a web-based test installation are freely available at http://bioinformatics.fh-stralsund.de/nucpos/


Physical Biology | 2011

Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers.

Vladimir B. Teif; Karsten Rippe

A recent study of transcription regulation in Drosophila embryonic development revealed a complex non-monotonic dependence of gene expression on the distance between binding sites of repressor and activator proteins at the corresponding enhancer cis-regulatory modules (Fakhouri et al 2010 Mol. Syst. Biol. 6 341). The repressor efficiency was high at small separations, low around 30 bp, reached a maximum at 50-60 bp, and decreased at larger distances to the activator binding sites. Here, we propose a straightforward explanation for the distance dependence of repressor activity by considering the effect of the presence of a nucleosome. Using a method that considers partial unwrapping of nucleosomal DNA from the histone octamer core, we calculated the dependence of activator binding on the repressor-activator distance and found a quantitative agreement with the distance dependence reported for the Drosophila enhancer element. In addition, the proposed model offers explanations for other distance-dependent effects at eukaryotic enhancers.

Collaboration


Dive into the Vladimir B. Teif's collaboration.

Top Co-Authors

Avatar

Karsten Rippe

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitri Y. Lando

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daria A. Beshnova

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Gero Wedemann

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Jan-Philipp Mallm

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Höfer

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Fabian Erdel

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge